/**\mainpage * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the copyright holder nor the names of the * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER * OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE * * The information provided is believed to be accurate and reliable. * The copyright holder assumes no responsibility * for the consequences of use * of such information nor for any infringement of patents or * other rights of third parties which may result from its use. * No license is granted by implication or otherwise under any patent or * patent rights of the copyright holder. * * File bme680.c * @date 19 Jun 2018 * @version 3.5.9 * */ /*! @file bme680.c @brief Sensor driver for BME680 sensor */ #include "driver/bme680.h" /****************** Global Function Definitions *******************************/ /*! *@brief This API is the entry point. *It reads the chip-id and calibration data from the sensor. */ int8_t BME680::init() { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Soft reset to restore it to default values*/ rslt = softReset(); if (rslt == BME680_OK) { rslt = getRegs(BME680_CHIP_ID_ADDR, &chip_id, 1); if (rslt == BME680_OK) { if (chip_id == BME680_CHIP_ID) { /* Get the Calibration data */ rslt = getCalibData(); } else { rslt = BME680_E_DEV_NOT_FOUND; } } } } return rslt; } /*! * @brief This API reads the data from the given register address of the sensor. */ int8_t BME680::getRegs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len) { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (intf == BME680_SPI_INTF) { /* Set the memory page */ rslt = setMemPage(reg_addr); if (rslt == BME680_OK) reg_addr = reg_addr | BME680_SPI_RD_MSK; } com_rslt = read(dev_id, reg_addr, reg_data, len); if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } return rslt; } /*! * @brief This API writes the given data to the register address * of the sensor. */ int8_t BME680::setRegs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len) { int8_t rslt; /* Length of the temporary buffer is 2*(length of register)*/ uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 }; uint16_t index; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) { /* Interleave the 2 arrays */ for (index = 0; index < len; index++) { if (intf == BME680_SPI_INTF) { /* Set the memory page */ rslt = setMemPage(reg_addr[index]); tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK; } else { tmp_buff[(2 * index)] = reg_addr[index]; } tmp_buff[(2 * index) + 1] = reg_data[index]; } /* Write the interleaved array */ if (rslt == BME680_OK) { com_rslt = write(dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1); if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } } else { rslt = BME680_E_INVALID_LENGTH; } } return rslt; } /*! * @brief This API performs the soft reset of the sensor. */ int8_t BME680::softReset() { int8_t rslt; uint8_t reg_addr = BME680_SOFT_RESET_ADDR; /* 0xb6 is the soft reset command */ uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (intf == BME680_SPI_INTF) rslt = getMemPage(); /* Reset the device */ if (rslt == BME680_OK) { rslt = setRegs(®_addr, &soft_rst_cmd, 1); /* Wait for 5ms */ delay_ms(BME680_RESET_PERIOD); if (rslt == BME680_OK) { /* After reset get the memory page */ if (intf == BME680_SPI_INTF) rslt = getMemPage(); } } } return rslt; } /*! * @brief This API is used to set the oversampling, filter and T,P,H, gas selection * settings in the sensor. */ int8_t BME680::setSensorSettings(uint16_t desired_settings) { int8_t rslt; uint8_t reg_addr; uint8_t data = 0; uint8_t count = 0; uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 }; uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; uint8_t intended_power_mode = power_mode; /* Save intended power mode */ /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (desired_settings & BME680_GAS_MEAS_SEL) rslt = setGasConfig(); power_mode = BME680_SLEEP_MODE; if (rslt == BME680_OK) rslt = getSensorMode(); /* Selecting the filter */ if (desired_settings & BME680_FILTER_SEL) { rslt = boundaryCheck(&tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127); reg_addr = BME680_CONF_ODR_FILT_ADDR; if (rslt == BME680_OK) rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_FILTER_SEL) data = BME680_SET_BITS(data, BME680_FILTER, tph_sett.filter); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; count++; } /* Selecting heater control for the sensor */ if (desired_settings & BME680_HCNTRL_SEL) { rslt = boundaryCheck(&gas_sett.heatr_ctrl, BME680_ENABLE_HEATER, BME680_DISABLE_HEATER); reg_addr = BME680_CONF_HEAT_CTRL_ADDR; if (rslt == BME680_OK) rslt = getRegs(reg_addr, &data, 1); data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, gas_sett.heatr_ctrl); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; count++; } /* Selecting heater T,P oversampling for the sensor */ if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { rslt = boundaryCheck(&tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X); reg_addr = BME680_CONF_T_P_MODE_ADDR; if (rslt == BME680_OK) rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_OST_SEL) data = BME680_SET_BITS(data, BME680_OST, tph_sett.os_temp); if (desired_settings & BME680_OSP_SEL) data = BME680_SET_BITS(data, BME680_OSP, tph_sett.os_pres); reg_array[count] = reg_addr; data_array[count] = data; count++; } /* Selecting humidity oversampling for the sensor */ if (desired_settings & BME680_OSH_SEL) { rslt = boundaryCheck(&tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X); reg_addr = BME680_CONF_OS_H_ADDR; if (rslt == BME680_OK) rslt = getRegs(reg_addr, &data, 1); data = BME680_SET_BITS_POS_0(data, BME680_OSH, tph_sett.os_hum); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; count++; } /* Selecting the runGas and NB conversion settings for the sensor */ if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { rslt = boundaryCheck(&gas_sett.run_gas, BME680_RUN_GAS_DISABLE, BME680_RUN_GAS_ENABLE); if (rslt == BME680_OK) { /* Validate boundary conditions */ rslt = boundaryCheck(&gas_sett.nb_conv, BME680_NBCONV_MIN, BME680_NBCONV_MAX); } reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR; if (rslt == BME680_OK) rslt = getRegs(reg_addr, &data, 1); if (desired_settings & BME680_RUN_GAS_SEL) data = BME680_SET_BITS(data, BME680_RUN_GAS, gas_sett.run_gas); if (desired_settings & BME680_NBCONV_SEL) data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, gas_sett.nb_conv); reg_array[count] = reg_addr; /* Append configuration */ data_array[count] = data; count++; } if (rslt == BME680_OK) rslt = setRegs(reg_array, data_array, count); /* Restore previous intended power mode */ power_mode = intended_power_mode; } return rslt; } /*! * @brief This API is used to get the oversampling, filter and T,P,H, gas selection * settings in the sensor. */ int8_t BME680::getSensorSettings(uint16_t desired_settings) { int8_t rslt; /* starting address of the register array for burst read*/ uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR; uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 }; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { rslt = getRegs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH); if (rslt == BME680_OK) { if (desired_settings & BME680_GAS_MEAS_SEL) rslt = getGasConfig(); /* get the T,P,H ,Filter,ODR settings here */ if (desired_settings & BME680_FILTER_SEL) tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX], BME680_FILTER); if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) { tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST); tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP); } if (desired_settings & BME680_OSH_SEL) tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX], BME680_OSH); /* get the gas related settings */ if (desired_settings & BME680_HCNTRL_SEL) gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX], BME680_HCTRL); if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) { gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX], BME680_NBCONV); gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX], BME680_RUN_GAS); } } } else { rslt = BME680_E_NULL_PTR; } return rslt; } /*! * @brief This API is used to set the power mode of the sensor. */ int8_t BME680::setSensorMode() { int8_t rslt; uint8_t tmp_pow_mode; uint8_t pow_mode = 0; uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Call repeatedly until in sleep */ do { rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1); if (rslt == BME680_OK) { /* Put to sleep before changing mode */ pow_mode = (tmp_pow_mode & BME680_MODE_MSK); if (pow_mode != BME680_SLEEP_MODE) { tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */ rslt = setRegs(®_addr, &tmp_pow_mode, 1); delay_ms(BME680_POLL_PERIOD_MS); } } } while (pow_mode != BME680_SLEEP_MODE); /* Already in sleep */ if (power_mode != BME680_SLEEP_MODE) { tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (power_mode & BME680_MODE_MSK); if (rslt == BME680_OK) rslt = setRegs(®_addr, &tmp_pow_mode, 1); } } return rslt; } /*! * @brief This API is used to get the power mode of the sensor. */ int8_t BME680::getSensorMode() { int8_t rslt; uint8_t mode; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { rslt = getRegs(BME680_CONF_T_P_MODE_ADDR, &mode, 1); /* Masking the other register bit info*/ power_mode = mode & BME680_MODE_MSK; } return rslt; } /*! * @brief This API is used to set the profile duration of the sensor. */ void BME680::setProfileDur(uint16_t duration) { uint32_t tph_dur; /* Calculate in us */ uint32_t meas_cycles; uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; meas_cycles = os_to_meas_cycles[tph_sett.os_temp]; meas_cycles += os_to_meas_cycles[tph_sett.os_pres]; meas_cycles += os_to_meas_cycles[tph_sett.os_hum]; /* TPH measurement duration */ tph_dur = meas_cycles * UINT32_C(1963); tph_dur += UINT32_C(477 * 4); /* TPH switching duration */ tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */ tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/ tph_dur /= UINT32_C(1000); /* Convert to ms */ tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ /* The remaining time should be used for heating */ gas_sett.heatr_dur = duration - (uint16_t) tph_dur; } /*! * @brief This API is used to get the profile duration of the sensor. */ void BME680::getProfileDur(uint16_t *duration) { uint32_t tph_dur; /* Calculate in us */ uint32_t meas_cycles; uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16}; meas_cycles = os_to_meas_cycles[tph_sett.os_temp]; meas_cycles += os_to_meas_cycles[tph_sett.os_pres]; meas_cycles += os_to_meas_cycles[tph_sett.os_hum]; /* TPH measurement duration */ tph_dur = meas_cycles * UINT32_C(1963); tph_dur += UINT32_C(477 * 4); /* TPH switching duration */ tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */ tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/ tph_dur /= UINT32_C(1000); /* Convert to ms */ tph_dur += UINT32_C(1); /* Wake up duration of 1ms */ *duration = (uint16_t) tph_dur; /* Get the gas duration only when the run gas is enabled */ if (gas_sett.run_gas) { /* The remaining time should be used for heating */ *duration += gas_sett.heatr_dur; } } /*! * @brief This API reads the pressure, temperature and humidity and gas data * from the sensor, compensates the data and store it in the bme680_data * structure instance passed by the user. */ int8_t BME680::getSensorData(struct bme680_field_data *data) { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { /* Reading the sensor data in forced mode only */ rslt = readFieldData(data); if (rslt == BME680_OK) { if (data->status & BME680_NEW_DATA_MSK) new_fields = 1; else new_fields = 0; } } return rslt; } /*! * @brief This internal API is used to read the calibrated data from the sensor. */ int8_t BME680::getCalibData() { int8_t rslt; uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 }; uint8_t temp_var = 0; /* Temporary variable */ /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { rslt = getRegs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN); /* Append the second half in the same array */ if (rslt == BME680_OK) rslt = getRegs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN] , BME680_COEFF_ADDR2_LEN); /* Temperature related coefficients */ calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG], coeff_array[BME680_T1_LSB_REG])); calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG], coeff_array[BME680_T2_LSB_REG])); calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]); /* Pressure related coefficients */ calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG], coeff_array[BME680_P1_LSB_REG])); calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG], coeff_array[BME680_P2_LSB_REG])); calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG]; calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG], coeff_array[BME680_P4_LSB_REG])); calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG], coeff_array[BME680_P5_LSB_REG])); calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]); calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]); calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG], coeff_array[BME680_P8_LSB_REG])); calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG], coeff_array[BME680_P9_LSB_REG])); calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]); /* Humidity related coefficients */ calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK)); calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL)); calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG]; calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG]; calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG]; calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG]; calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG]; /* Gas heater related coefficients */ calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG]; calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG], coeff_array[BME680_GH2_LSB_REG])); calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG]; /* Other coefficients */ if (rslt == BME680_OK) { rslt = getRegs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1); calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16); if (rslt == BME680_OK) { rslt = getRegs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1); calib.res_heat_val = (int8_t) temp_var; if (rslt == BME680_OK) rslt = getRegs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1); } } calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16; } return rslt; } /*! * @brief This internal API is used to set the gas configuration of the sensor. */ int8_t BME680::setGasConfig() { int8_t rslt; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { uint8_t reg_addr[2] = {0}; uint8_t reg_data[2] = {0}; if (power_mode == BME680_FORCED_MODE) { reg_addr[0] = BME680_RES_HEAT0_ADDR; reg_data[0] = calcHeaterRes(gas_sett.heatr_temp); reg_addr[1] = BME680_GAS_WAIT0_ADDR; reg_data[1] = calcHeaterDur(gas_sett.heatr_dur); gas_sett.nb_conv = 0; } else { rslt = BME680_W_DEFINE_PWR_MODE; } if (rslt == BME680_OK) rslt = setRegs(reg_addr, reg_data, 2); } return rslt; } /*! * @brief This internal API is used to get the gas configuration of the sensor. * @note heatr_temp and heatr_dur values are currently register data * and not the actual values set */ int8_t BME680::getGasConfig() { int8_t rslt; /* starting address of the register array for burst read*/ uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START; uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START; uint8_t reg_data = 0; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (BME680_SPI_INTF == intf) { /* Memory page switch the SPI address*/ rslt = setMemPage(reg_addr1); } if (rslt == BME680_OK) { rslt = getRegs(reg_addr1, ®_data, 1); if (rslt == BME680_OK) { gas_sett.heatr_temp = reg_data; rslt = getRegs(reg_addr2, ®_data, 1); if (rslt == BME680_OK) { /* Heating duration register value */ gas_sett.heatr_dur = reg_data; } } } } return rslt; } #ifndef BME680_FLOAT_POINT_COMPENSATION /*! * @brief This internal API is used to calculate the temperature value. */ int16_t BME680::calcTemperature(uint32_t temp_adc) { int64_t var1; int64_t var2; int64_t var3; int16_t calc_temp; var1 = ((int32_t) temp_adc >> 3) - ((int32_t) calib.par_t1 << 1); var2 = (var1 * (int32_t) calib.par_t2) >> 11; var3 = ((var1 >> 1) * (var1 >> 1)) >> 12; var3 = ((var3) * ((int32_t) calib.par_t3 << 4)) >> 14; calib.t_fine = (int32_t) (var2 + var3); calc_temp = (int16_t) (((calib.t_fine * 5) + 128) >> 8); return calc_temp; } /*! * @brief This internal API is used to calculate the pressure value. */ uint32_t BME680::calcPressure(uint32_t pres_adc) { int32_t var1; int32_t var2; int32_t var3; int32_t pressure_comp; var1 = (((int32_t)calib.t_fine) >> 1) - 64000; var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * (int32_t)calib.par_p6) >> 2; var2 = var2 + ((var1 * (int32_t)calib.par_p5) << 1); var2 = (var2 >> 2) + ((int32_t)calib.par_p4 << 16); var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) * ((int32_t)calib.par_p3 << 5)) >> 3) + (((int32_t)calib.par_p2 * var1) >> 1); var1 = var1 >> 18; var1 = ((32768 + var1) * (int32_t)calib.par_p1) >> 15; pressure_comp = 1048576 - pres_adc; pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125)); if (pressure_comp >= BME680_MAX_OVERFLOW_VAL) pressure_comp = ((pressure_comp / var1) << 1); else pressure_comp = ((pressure_comp << 1) / var1); var1 = ((int32_t)calib.par_p9 * (int32_t)(((pressure_comp >> 3) * (pressure_comp >> 3)) >> 13)) >> 12; var2 = ((int32_t)(pressure_comp >> 2) * (int32_t)calib.par_p8) >> 13; var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) * (int32_t)calib.par_p10) >> 17; pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 + ((int32_t)calib.par_p7 << 7)) >> 4); return (uint32_t)pressure_comp; } /*! * @brief This internal API is used to calculate the humidity value. */ uint32_t BME680::calcHumidity(uint16_t hum_adc) { int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; int32_t var6; int32_t temp_scaled; int32_t calc_hum; temp_scaled = (((int32_t) calib.t_fine * 5) + 128) >> 8; var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) calib.par_h1 * 16))) - (((temp_scaled * (int32_t) calib.par_h3) / ((int32_t) 100)) >> 1); var2 = ((int32_t) calib.par_h2 * (((temp_scaled * (int32_t) calib.par_h4) / ((int32_t) 100)) + (((temp_scaled * ((temp_scaled * (int32_t) calib.par_h5) / ((int32_t) 100))) >> 6) / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10; var3 = var1 * var2; var4 = (int32_t) calib.par_h6 << 7; var4 = ((var4) + ((temp_scaled * (int32_t) calib.par_h7) / ((int32_t) 100))) >> 4; var5 = ((var3 >> 14) * (var3 >> 14)) >> 10; var6 = (var4 * var5) >> 1; calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12; if (calc_hum > 100000) /* Cap at 100%rH */ calc_hum = 100000; else if (calc_hum < 0) calc_hum = 0; return (uint32_t) calc_hum; } /*! * @brief This internal API is used to calculate the Gas Resistance value. */ uint32_t BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range) { int64_t var1; uint64_t var2; int64_t var3; uint32_t calc_gas_res; /**Look up table 1 for the possible gas range values */ uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228), UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647) }; /**Look up table 2 for the possible gas range values */ uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000), UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016), UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000), UINT32_C(250000), UINT32_C(125000) }; var1 = (int64_t) ((1340 + (5 * (int64_t) calib.range_sw_err)) * ((int64_t) lookupTable1[gas_range])) >> 16; var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1); var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9); calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2); return calc_gas_res; } /*! * @brief This internal API is used to calculate the Heat Resistance value. */ uint8_t BME680::calcHeaterRes(uint16_t temp) { uint8_t heatr_res; int32_t var1; int32_t var2; int32_t var3; int32_t var4; int32_t var5; int32_t heatr_res_x100; if (temp > 400) /* Cap temperature */ temp = 400; var1 = (((int32_t) amb_temp * calib.par_gh3) / 1000) * 256; var2 = (calib.par_gh1 + 784) * (((((calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10); var3 = var1 + (var2 / 2); var4 = (var3 / (calib.res_heat_range + 4)); var5 = (131 * calib.res_heat_val) + 65536; heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34); heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100); return heatr_res; } #else /*! * @brief This internal API is used to calculate the * temperature value in float format */ float BME680::calcTemperature(uint32_t temp_adc) { float var1 = 0; float var2 = 0; float calc_temp = 0; /* calculate var1 data */ var1 = ((((float)temp_adc / 16384.0f) - ((float)calib.par_t1 / 1024.0f)) * ((float)calib.par_t2)); /* calculate var2 data */ var2 = (((((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f)) * (((float)temp_adc / 131072.0f) - ((float)calib.par_t1 / 8192.0f))) * ((float)calib.par_t3 * 16.0f)); /* t_fine value*/ calib.t_fine = (var1 + var2); /* compensated temperature data*/ calc_temp = ((calib.t_fine) / 5120.0f); return calc_temp; } /*! * @brief This internal API is used to calculate the * pressure value in float format */ float BME680::calcPressure(uint32_t pres_adc) { float var1 = 0; float var2 = 0; float var3 = 0; float calc_pres = 0; var1 = (((float)calib.t_fine / 2.0f) - 64000.0f); var2 = var1 * var1 * (((float)calib.par_p6) / (131072.0f)); var2 = var2 + (var1 * ((float)calib.par_p5) * 2.0f); var2 = (var2 / 4.0f) + (((float)calib.par_p4) * 65536.0f); var1 = (((((float)calib.par_p3 * var1 * var1) / 16384.0f) + ((float)calib.par_p2 * var1)) / 524288.0f); var1 = ((1.0f + (var1 / 32768.0f)) * ((float)calib.par_p1)); calc_pres = (1048576.0f - ((float)pres_adc)); /* Avoid exception caused by division by zero */ if ((int)var1 != 0) { calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1); var1 = (((float)calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f; var2 = calc_pres * (((float)calib.par_p8) / 32768.0f); var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f) * (calib.par_p10 / 131072.0f)); calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)calib.par_p7 * 128.0f)) / 16.0f); } else { calc_pres = 0; } return calc_pres; } /*! * @brief This internal API is used to calculate the * humidity value in float format */ float BME680::calcHumidity(uint16_t hum_adc) { float calc_hum = 0; float var1 = 0; float var2 = 0; float var3 = 0; float var4 = 0; float temp_comp; /* compensated temperature data*/ temp_comp = ((calib.t_fine) / 5120.0f); var1 = (float)((float)hum_adc) - (((float)calib.par_h1 * 16.0f) + (((float)calib.par_h3 / 2.0f) * temp_comp)); var2 = var1 * ((float)(((float) calib.par_h2 / 262144.0f) * (1.0f + (((float)calib.par_h4 / 16384.0f) * temp_comp) + (((float)calib.par_h5 / 1048576.0f) * temp_comp * temp_comp)))); var3 = (float) calib.par_h6 / 16384.0f; var4 = (float) calib.par_h7 / 2097152.0f; calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2); if (calc_hum > 100.0f) calc_hum = 100.0f; else if (calc_hum < 0.0f) calc_hum = 0.0f; return calc_hum; } /*! * @brief This internal API is used to calculate the * gas resistance value in float format */ float BME680::calcGasResistance(uint16_t gas_res_adc, uint8_t gas_range) { float calc_gas_res; float var1 = 0; float var2 = 0; float var3 = 0; const float lookup_k1_range[16] = { 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8, 0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0}; const float lookup_k2_range[16] = { 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8, -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; var1 = (1340.0f + (5.0f * calib.range_sw_err)); var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f); var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f); calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc) - 512.0f)/var2) + 1.0f)); return calc_gas_res; } /*! * @brief This internal API is used to calculate the * heater resistance value in float format */ float BME680::calcHeaterRes(uint16_t temp) { float var1 = 0; float var2 = 0; float var3 = 0; float var4 = 0; float var5 = 0; float res_heat = 0; if (temp > 400) /* Cap temperature */ temp = 400; var1 = (((float)calib.par_gh1 / (16.0f)) + 49.0f); var2 = ((((float)calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f); var3 = ((float)calib.par_gh3 / (1024.0f)); var4 = (var1 * (1.0f + (var2 * (float)temp))); var5 = (var4 + (var3 * (float)amb_temp)); res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)calib.res_heat_range)) * (1/(1 + ((float) calib.res_heat_val * 0.002f)))) - 25)); return res_heat; } #endif /*! * @brief This internal API is used to calculate the Heat duration value. */ uint8_t BME680::calcHeaterDur(uint16_t dur) { uint8_t factor = 0; uint8_t durval; if (dur >= 0xfc0) { durval = 0xff; /* Max duration*/ } else { while (dur > 0x3F) { dur = dur / 4; factor += 1; } durval = (uint8_t) (dur + (factor * 64)); } return durval; } /*! * @brief This internal API is used to calculate the field data of sensor. */ int8_t BME680::readFieldData(struct bme680_field_data *data) { int8_t rslt; uint8_t buff[BME680_FIELD_LENGTH] = { 0 }; uint8_t gas_range; uint32_t adc_temp; uint32_t adc_pres; uint16_t adc_hum; uint16_t adc_gas_res; uint8_t tries = 10; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); do { if (rslt == BME680_OK) { rslt = getRegs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH); data->status = buff[0] & BME680_NEW_DATA_MSK; data->gas_index = buff[0] & BME680_GAS_INDEX_MSK; data->meas_index = buff[1]; /* read the raw data from the sensor */ adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16) | ((uint32_t) buff[4] / 16)); adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16) | ((uint32_t) buff[7] / 16)); adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]); adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64)); gas_range = buff[14] & BME680_GAS_RANGE_MSK; data->status |= buff[14] & BME680_GASM_VALID_MSK; data->status |= buff[14] & BME680_HEAT_STAB_MSK; if (data->status & BME680_NEW_DATA_MSK) { data->temperature = calcTemperature(adc_temp); data->pressure = calcPressure(adc_pres); data->humidity = calcHumidity(adc_hum); data->gas_resistance = calcGasResistance(adc_gas_res, gas_range); break; } /* Delay to poll the data */ delay_ms(BME680_POLL_PERIOD_MS); } tries--; } while (tries); if (!tries) rslt = BME680_W_NO_NEW_DATA; return rslt; } /*! * @brief This internal API is used to set the memory page based on register address. */ int8_t BME680::setMemPage(uint8_t reg_addr) { int8_t rslt; uint8_t reg; uint8_t new_mem_page; /* Check for null pointers in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { if (reg_addr > 0x7f) new_mem_page = BME680_MEM_PAGE1; else new_mem_page = BME680_MEM_PAGE0; if (new_mem_page != mem_page) { mem_page = new_mem_page; com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); if (com_rslt != 0) rslt = BME680_E_COM_FAIL; if (rslt == BME680_OK) { reg = reg & (~BME680_MEM_PAGE_MSK); reg = reg | (mem_page & BME680_MEM_PAGE_MSK); com_rslt = write(dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK, ®, 1); if (com_rslt != 0) rslt = BME680_E_COM_FAIL; } } } return rslt; } /*! * @brief This internal API is used to get the memory page based on register address. */ int8_t BME680::getMemPage() { int8_t rslt; uint8_t reg; /* Check for null pointer in the device structure*/ rslt = nullPtrCheck(); if (rslt == BME680_OK) { com_rslt = read(dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, ®, 1); if (com_rslt != 0) rslt = BME680_E_COM_FAIL; else mem_page = reg & BME680_MEM_PAGE_MSK; } return rslt; } /*! * @brief This internal API is used to validate the boundary * conditions. */ int8_t BME680::boundaryCheck(uint8_t *value, uint8_t min, uint8_t max) { int8_t rslt = BME680_OK; if (value != NULL) { /* Check if value is below minimum value */ if (*value < min) { /* Auto correct the invalid value to minimum value */ *value = min; info_msg |= BME680_I_MIN_CORRECTION; } /* Check if value is above maximum value */ if (*value > max) { /* Auto correct the invalid value to maximum value */ *value = max; info_msg |= BME680_I_MAX_CORRECTION; } } else { rslt = BME680_E_NULL_PTR; } return rslt; } /*! * @brief This internal API is used to validate the device structure pointer for * null conditions. */ int8_t BME680::nullPtrCheck() { int8_t rslt; if ((read == NULL) || (write == NULL) || (delay_ms == NULL)) { /* Device structure pointer is not valid */ rslt = BME680_E_NULL_PTR; } else { /* Device structure is fine */ rslt = BME680_OK; } return rslt; } BME680 bme680(BME680_I2C_ADDR_SECONDARY);