/* * Based on https://github.com/nRF24/RF24 */ #include #include "driver/nrf24l01.h" #include "driver/nrf24l01/registers.h" #include "driver/spi_b.h" #include "driver/gpio.h" #include "arch.h" #ifndef NRF24L01_EN_PIN #error makeflag nrf24l01_en_pin required #endif #ifndef NRF24L01_CS_PIN #error makeflag nrf24l01_cs_pin required #endif void Nrf24l01::setup() { spi.setup(); gpio.input(NRF24L01_IRQ_PIN, true); gpio.output(NRF24L01_EN_PIN); gpio.output(NRF24L01_CS_PIN); gpio.write(NRF24L01_EN_PIN, 0); csnHigh(); arch.delay_ms(5); // Reset NRF_CONFIG and enable 16-bit CRC. writeRegister(NRF_CONFIG, 0b00001100); // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See documentation for a more complete explanation. setRetries(5, 10); // Reset value is MAX setPALevel(RF24_PA_MAX); setDataRate(RF24_1MBPS); toggleFeatures(); writeRegister(FEATURE, 0); writeRegister(DYNPD, 0); dynamic_payloads_enabled = false; // Reset current status // Notice reset and flush is the last thing we do writeRegister(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT)); // Set up default configuration. Callers can always change it later. // This channel should be universally safe and not bleed over into adjacent // spectrum. setChannel(76); // Flush buffers flushRx(); flushTx(); maskIRQ(true, false, false); powerUp(); //Power up by default when begin() is called // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp ) // PTX should use only 22uA of power writeRegister(NRF_CONFIG, (readRegister(NRF_CONFIG)) & ~(1 << PRIM_RX)); } //Power up now. Radio will not power down unless instructed by MCU for config changes etc. void Nrf24l01::powerUp(void) { uint8_t cfg = readRegister(NRF_CONFIG); // if not powered up then power up and wait for the radio to initialize if (!(cfg & (1 << PWR_UP))) { writeRegister(NRF_CONFIG, cfg | (1 << PWR_UP)); // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet arch.delay_us(5); } } void Nrf24l01::setRetries(uint8_t delay, uint8_t count) { writeRegister(SETUP_RETR, (delay & 0xf) << ARD | (count & 0xf) << ARC); } void Nrf24l01::setPALevel(uint8_t level) { uint8_t setup = readRegister(RF_SETUP) & 0b11111000; if (level > 3) { // If invalid level, go to max PA level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit } else { level = (level << 1) + 1; // Else set level as requested } writeRegister(RF_SETUP, setup |= level); // Write it to the chip } bool Nrf24l01::setDataRate(Nrf24l01::rf24_datarate_e speed) { bool result = false; uint8_t setup = readRegister(RF_SETUP); // HIGH and LOW '00' is 1Mbs - our default setup &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH)); txRxDelay = 85; if (speed == RF24_250KBPS) { // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 // Making it '10'. setup |= (1 << RF_DR_LOW); txRxDelay = 155; } else { // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 // Making it '01' if (speed == RF24_2MBPS) { setup |= (1 << RF_DR_HIGH); txRxDelay = 65; } } writeRegister(RF_SETUP, setup); // Verify our result if (readRegister(RF_SETUP) == setup) { result = true; } return result; } void Nrf24l01::toggleFeatures(void) { beginTransaction(); txbuf[0] = ACTIVATE; txbuf[1] = 0x73; spi.xmit(2, txbuf, 0, rxbuf); endTransaction(); } void Nrf24l01::setChannel(uint8_t channel) { writeRegister(RF_CH, rf24_min(channel, 125)); } uint8_t Nrf24l01::write(const void *buf, uint8_t len, bool blocking) { writePayload(buf, len, W_TX_PAYLOAD); gpio.write(NRF24L01_EN_PIN, 1); arch.delay_us(10); gpio.write(NRF24L01_EN_PIN, 0); if (!blocking) { return 0; } while (!(getStatus() & ((1 << TX_DS) | (1 << MAX_RT)))) ; uint8_t status = writeRegister(NRF_STATUS, ((1 << TX_DS) | (1 << MAX_RT))); if (status & (1 << MAX_RT)) { // flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush return 0; } return 1; } void Nrf24l01::maskIRQ(bool tx, bool fail, bool rx) { uint8_t config = readRegister(NRF_CONFIG); /* clear the interrupt flags */ config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); /* set the specified interrupt flags */ config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; writeRegister(NRF_CONFIG, config); } uint8_t Nrf24l01::getStatus() { txbuf[0] = NOP; beginTransaction(); spi.xmit(1, txbuf, 1, rxbuf); endTransaction(); return rxbuf[0]; } uint8_t Nrf24l01::readRegister(uint8_t reg) { txbuf[0] = R_REGISTER | (REGISTER_MASK & reg); txbuf[1] = NOP; beginTransaction(); spi.xmit(2, txbuf, 2, rxbuf); endTransaction(); return rxbuf[1]; } uint8_t Nrf24l01::writeRegister(uint8_t reg, uint8_t value) { txbuf[0] = W_REGISTER | (REGISTER_MASK & reg); txbuf[1] = value; beginTransaction(); spi.xmit(2, txbuf, 1, rxbuf); endTransaction(); return rxbuf[0]; } uint8_t Nrf24l01::writePayload(const void *buf, uint8_t data_len, const uint8_t writeType) { data_len = rf24_min(data_len, payload_size); uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; //printf("[Writing %u bytes %u blanks]",data_len,blank_len); //IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); ); beginTransaction(); txbuf[0] = writeType; spi.xmit(1, txbuf, 1, rxbuf); spi.xmit(data_len, (unsigned char *)buf, 0, NULL); txbuf[0] = 0; while (blank_len--) { spi.xmit(1, txbuf, 0, NULL); } endTransaction(); return rxbuf[0]; } uint8_t Nrf24l01::flushRx(void) { txbuf[0] = FLUSH_RX; beginTransaction(); spi.xmit(1, txbuf, 1, rxbuf); endTransaction(); return rxbuf[0]; } /****************************************************************************/ uint8_t Nrf24l01::flushTx(void) { txbuf[0] = FLUSH_TX; beginTransaction(); spi.xmit(1, txbuf, 1, rxbuf); endTransaction(); return rxbuf[0]; } Nrf24l01 nrf24l01;