/** * The MIT License (MIT) * * Copyright (c) 2015-2018 Nicholas Fraser * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ /* * This is the MPack 1.0 amalgamation package. * * http://github.com/ludocode/mpack */ #define MPACK_INTERNAL 1 #define MPACK_EMIT_INLINE_DEFS 1 #include "mpack.h" /* mpack/mpack-platform.c.c */ // We define MPACK_EMIT_INLINE_DEFS and include mpack.h to emit // standalone definitions of all (non-static) inline functions in MPack. #define MPACK_INTERNAL 1 #define MPACK_EMIT_INLINE_DEFS 1 /* #include "mpack-platform.h" */ /* #include "mpack.h" */ #if MPACK_DEBUG && MPACK_STDIO #include <stdarg.h> #endif #if MPACK_DEBUG #if MPACK_STDIO void mpack_assert_fail_format(const char* format, ...) { char buffer[512]; va_list args; va_start(args, format); vsnprintf(buffer, sizeof(buffer), format, args); va_end(args); buffer[sizeof(buffer) - 1] = 0; mpack_assert_fail_wrapper(buffer); } void mpack_break_hit_format(const char* format, ...) { char buffer[512]; va_list args; va_start(args, format); vsnprintf(buffer, sizeof(buffer), format, args); va_end(args); buffer[sizeof(buffer) - 1] = 0; mpack_break_hit(buffer); } #endif #if !MPACK_CUSTOM_ASSERT void mpack_assert_fail(const char* message) { MPACK_UNUSED(message); #if MPACK_STDIO fprintf(stderr, "%s\n", message); #endif } #endif // We split the assert failure from the wrapper so that a // custom assert function can return. void mpack_assert_fail_wrapper(const char* message) { #ifdef MPACK_GCOV // gcov marks even __builtin_unreachable() as an uncovered line. this // silences it. (mpack_assert_fail(message), __builtin_unreachable()); #else mpack_assert_fail(message); // mpack_assert_fail() is not supposed to return. in case it does, we // abort. #if !MPACK_NO_BUILTINS #if defined(__GNUC__) || defined(__clang__) __builtin_trap(); #elif defined(WIN32) __debugbreak(); #endif #endif #if (defined(__GNUC__) || defined(__clang__)) && !MPACK_NO_BUILTINS __builtin_abort(); #elif MPACK_STDLIB abort(); #endif MPACK_UNREACHABLE; #endif } #if !MPACK_CUSTOM_BREAK // If we have a custom assert handler, break wraps it by default. // This allows users of MPack to only implement mpack_assert_fail() without // having to worry about the difference between assert and break. // // MPACK_CUSTOM_BREAK is available to define a separate break handler // (which is needed by the unit test suite), but this is not offered in // mpack-config.h for simplicity. #if MPACK_CUSTOM_ASSERT void mpack_break_hit(const char* message) { mpack_assert_fail_wrapper(message); } #else void mpack_break_hit(const char* message) { MPACK_UNUSED(message); #if MPACK_STDIO fprintf(stderr, "%s\n", message); #endif #if defined(__GNUC__) || defined(__clang__) && !MPACK_NO_BUILTINS __builtin_trap(); #elif defined(WIN32) && !MPACK_NO_BUILTINS __debugbreak(); #elif MPACK_STDLIB abort(); #endif } #endif #endif #endif // The below are adapted from the C wikibook: // https://en.wikibooks.org/wiki/C_Programming/Strings #ifndef mpack_memcmp int mpack_memcmp(const void* s1, const void* s2, size_t n) { const unsigned char *us1 = (const unsigned char *) s1; const unsigned char *us2 = (const unsigned char *) s2; while (n-- != 0) { if (*us1 != *us2) return (*us1 < *us2) ? -1 : +1; us1++; us2++; } return 0; } #endif #ifndef mpack_memcpy void* mpack_memcpy(void* MPACK_RESTRICT s1, const void* MPACK_RESTRICT s2, size_t n) { char* MPACK_RESTRICT dst = (char *)s1; const char* MPACK_RESTRICT src = (const char *)s2; while (n-- != 0) *dst++ = *src++; return s1; } #endif #ifndef mpack_memmove void* mpack_memmove(void* s1, const void* s2, size_t n) { char *p1 = (char *)s1; const char *p2 = (const char *)s2; if (p2 < p1 && p1 < p2 + n) { p2 += n; p1 += n; while (n-- != 0) *--p1 = *--p2; } else while (n-- != 0) *p1++ = *p2++; return s1; } #endif #ifndef mpack_memset void* mpack_memset(void* s, int c, size_t n) { unsigned char *us = (unsigned char *)s; unsigned char uc = (unsigned char)c; while (n-- != 0) *us++ = uc; return s; } #endif #ifndef mpack_strlen size_t mpack_strlen(const char* s) { const char* p = s; while (*p != '\0') p++; return (size_t)(p - s); } #endif #if defined(MPACK_MALLOC) && !defined(MPACK_REALLOC) void* mpack_realloc(void* old_ptr, size_t used_size, size_t new_size) { if (new_size == 0) { if (old_ptr) MPACK_FREE(old_ptr); return NULL; } void* new_ptr = MPACK_MALLOC(new_size); if (new_ptr == NULL) return NULL; mpack_memcpy(new_ptr, old_ptr, used_size); MPACK_FREE(old_ptr); return new_ptr; } #endif /* mpack/mpack-common.c.c */ #define MPACK_INTERNAL 1 /* #include "mpack-common.h" */ #if MPACK_DEBUG && MPACK_STDIO #include <stdarg.h> #endif const char* mpack_error_to_string(mpack_error_t error) { #if MPACK_STRINGS switch (error) { #define MPACK_ERROR_STRING_CASE(e) case e: return #e MPACK_ERROR_STRING_CASE(mpack_ok); MPACK_ERROR_STRING_CASE(mpack_error_io); MPACK_ERROR_STRING_CASE(mpack_error_invalid); MPACK_ERROR_STRING_CASE(mpack_error_unsupported); MPACK_ERROR_STRING_CASE(mpack_error_type); MPACK_ERROR_STRING_CASE(mpack_error_too_big); MPACK_ERROR_STRING_CASE(mpack_error_memory); MPACK_ERROR_STRING_CASE(mpack_error_bug); MPACK_ERROR_STRING_CASE(mpack_error_data); MPACK_ERROR_STRING_CASE(mpack_error_eof); #undef MPACK_ERROR_STRING_CASE } mpack_assert(0, "unrecognized error %i", (int)error); return "(unknown mpack_error_t)"; #else MPACK_UNUSED(error); return ""; #endif } const char* mpack_type_to_string(mpack_type_t type) { #if MPACK_STRINGS switch (type) { #define MPACK_TYPE_STRING_CASE(e) case e: return #e MPACK_TYPE_STRING_CASE(mpack_type_missing); MPACK_TYPE_STRING_CASE(mpack_type_nil); MPACK_TYPE_STRING_CASE(mpack_type_bool); MPACK_TYPE_STRING_CASE(mpack_type_float); MPACK_TYPE_STRING_CASE(mpack_type_double); MPACK_TYPE_STRING_CASE(mpack_type_int); MPACK_TYPE_STRING_CASE(mpack_type_uint); MPACK_TYPE_STRING_CASE(mpack_type_str); MPACK_TYPE_STRING_CASE(mpack_type_bin); MPACK_TYPE_STRING_CASE(mpack_type_array); MPACK_TYPE_STRING_CASE(mpack_type_map); #if MPACK_EXTENSIONS MPACK_TYPE_STRING_CASE(mpack_type_ext); #endif #undef MPACK_TYPE_STRING_CASE } mpack_assert(0, "unrecognized type %i", (int)type); return "(unknown mpack_type_t)"; #else MPACK_UNUSED(type); return ""; #endif } int mpack_tag_cmp(mpack_tag_t left, mpack_tag_t right) { // positive numbers may be stored as int; convert to uint if (left.type == mpack_type_int && left.v.i >= 0) { left.type = mpack_type_uint; left.v.u = (uint64_t)left.v.i; } if (right.type == mpack_type_int && right.v.i >= 0) { right.type = mpack_type_uint; right.v.u = (uint64_t)right.v.i; } if (left.type != right.type) return ((int)left.type < (int)right.type) ? -1 : 1; switch (left.type) { case mpack_type_missing: // fallthrough case mpack_type_nil: return 0; case mpack_type_bool: return (int)left.v.b - (int)right.v.b; case mpack_type_int: if (left.v.i == right.v.i) return 0; return (left.v.i < right.v.i) ? -1 : 1; case mpack_type_uint: if (left.v.u == right.v.u) return 0; return (left.v.u < right.v.u) ? -1 : 1; case mpack_type_array: case mpack_type_map: if (left.v.n == right.v.n) return 0; return (left.v.n < right.v.n) ? -1 : 1; case mpack_type_str: case mpack_type_bin: if (left.v.l == right.v.l) return 0; return (left.v.l < right.v.l) ? -1 : 1; #if MPACK_EXTENSIONS case mpack_type_ext: if (left.exttype == right.exttype) { if (left.v.l == right.v.l) return 0; return (left.v.l < right.v.l) ? -1 : 1; } return (int)left.exttype - (int)right.exttype; #endif // floats should not normally be compared for equality. we compare // with memcmp() to silence compiler warnings, but this will return // equal if both are NaNs with the same representation (though we may // want this, for instance if you are for some bizarre reason using // floats as map keys.) i'm not sure what the right thing to // do is here. check for NaN first? always return false if the type // is float? use operator== and pragmas to silence compiler warning? // please send me your suggestions. // note also that we don't convert floats to doubles, so when this is // used for ordering purposes, all floats are ordered before all // doubles. case mpack_type_float: return mpack_memcmp(&left.v.f, &right.v.f, sizeof(left.v.f)); case mpack_type_double: return mpack_memcmp(&left.v.d, &right.v.d, sizeof(left.v.d)); } mpack_assert(0, "unrecognized type %i", (int)left.type); return false; } #if MPACK_DEBUG && MPACK_STDIO static char mpack_hex_char(uint8_t hex_value) { return (hex_value < 10) ? (char)('0' + hex_value) : (char)('a' + (hex_value - 10)); } static void mpack_tag_debug_complete_bin_ext(mpack_tag_t tag, size_t string_length, char* buffer, size_t buffer_size, const char* prefix, size_t prefix_size) { // If at any point in this function we run out of space in the buffer, we // bail out. The outer tag print wrapper will make sure we have a // null-terminator. if (string_length == 0 || string_length >= buffer_size) return; buffer += string_length; buffer_size -= string_length; size_t total = mpack_tag_bytes(&tag); if (total == 0) { strncpy(buffer, ">", buffer_size); return; } strncpy(buffer, ": ", buffer_size); if (buffer_size < 2) return; buffer += 2; buffer_size -= 2; size_t hex_bytes = 0; for (size_t i = 0; i < MPACK_PRINT_BYTE_COUNT && i < prefix_size && buffer_size > 2; ++i) { uint8_t byte = (uint8_t)prefix[i]; buffer[0] = mpack_hex_char((uint8_t)(byte >> 4)); buffer[1] = mpack_hex_char((uint8_t)(byte & 0xfu)); buffer += 2; buffer_size -= 2; ++hex_bytes; } if (buffer_size != 0) mpack_snprintf(buffer, buffer_size, "%s>", (total > hex_bytes) ? "..." : ""); } static void mpack_tag_debug_pseudo_json_bin(mpack_tag_t tag, char* buffer, size_t buffer_size, const char* prefix, size_t prefix_size) { mpack_assert(mpack_tag_type(&tag) == mpack_type_bin); size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<binary data of length %u", tag.v.l); mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size); } #if MPACK_EXTENSIONS static void mpack_tag_debug_pseudo_json_ext(mpack_tag_t tag, char* buffer, size_t buffer_size, const char* prefix, size_t prefix_size) { mpack_assert(mpack_tag_type(&tag) == mpack_type_ext); size_t length = (size_t)mpack_snprintf(buffer, buffer_size, "<ext data of type %i and length %u", mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag)); mpack_tag_debug_complete_bin_ext(tag, length, buffer, buffer_size, prefix, prefix_size); } #endif static void mpack_tag_debug_pseudo_json_impl(mpack_tag_t tag, char* buffer, size_t buffer_size, const char* prefix, size_t prefix_size) { switch (tag.type) { case mpack_type_missing: mpack_snprintf(buffer, buffer_size, "<missing!>"); return; case mpack_type_nil: mpack_snprintf(buffer, buffer_size, "null"); return; case mpack_type_bool: mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false"); return; case mpack_type_int: mpack_snprintf(buffer, buffer_size, "%" PRIi64, tag.v.i); return; case mpack_type_uint: mpack_snprintf(buffer, buffer_size, "%" PRIu64, tag.v.u); return; case mpack_type_float: mpack_snprintf(buffer, buffer_size, "%f", tag.v.f); return; case mpack_type_double: mpack_snprintf(buffer, buffer_size, "%f", tag.v.d); return; case mpack_type_str: mpack_snprintf(buffer, buffer_size, "<string of %u bytes>", tag.v.l); return; case mpack_type_bin: mpack_tag_debug_pseudo_json_bin(tag, buffer, buffer_size, prefix, prefix_size); return; #if MPACK_EXTENSIONS case mpack_type_ext: mpack_tag_debug_pseudo_json_ext(tag, buffer, buffer_size, prefix, prefix_size); return; #endif case mpack_type_array: mpack_snprintf(buffer, buffer_size, "<array of %u elements>", tag.v.n); return; case mpack_type_map: mpack_snprintf(buffer, buffer_size, "<map of %u key-value pairs>", tag.v.n); return; } mpack_snprintf(buffer, buffer_size, "<unknown!>"); } void mpack_tag_debug_pseudo_json(mpack_tag_t tag, char* buffer, size_t buffer_size, const char* prefix, size_t prefix_size) { mpack_assert(buffer_size > 0, "buffer size cannot be zero!"); buffer[0] = 0; mpack_tag_debug_pseudo_json_impl(tag, buffer, buffer_size, prefix, prefix_size); // We always null-terminate the buffer manually just in case the snprintf() // function doesn't null-terminate when the string doesn't fit. buffer[buffer_size - 1] = 0; } static void mpack_tag_debug_describe_impl(mpack_tag_t tag, char* buffer, size_t buffer_size) { switch (tag.type) { case mpack_type_missing: mpack_snprintf(buffer, buffer_size, "missing"); return; case mpack_type_nil: mpack_snprintf(buffer, buffer_size, "nil"); return; case mpack_type_bool: mpack_snprintf(buffer, buffer_size, tag.v.b ? "true" : "false"); return; case mpack_type_int: mpack_snprintf(buffer, buffer_size, "int %" PRIi64, tag.v.i); return; case mpack_type_uint: mpack_snprintf(buffer, buffer_size, "uint %" PRIu64, tag.v.u); return; case mpack_type_float: mpack_snprintf(buffer, buffer_size, "float %f", tag.v.f); return; case mpack_type_double: mpack_snprintf(buffer, buffer_size, "double %f", tag.v.d); return; case mpack_type_str: mpack_snprintf(buffer, buffer_size, "str of %u bytes", tag.v.l); return; case mpack_type_bin: mpack_snprintf(buffer, buffer_size, "bin of %u bytes", tag.v.l); return; #if MPACK_EXTENSIONS case mpack_type_ext: mpack_snprintf(buffer, buffer_size, "ext of type %i, %u bytes", mpack_tag_ext_exttype(&tag), mpack_tag_ext_length(&tag)); return; #endif case mpack_type_array: mpack_snprintf(buffer, buffer_size, "array of %u elements", tag.v.n); return; case mpack_type_map: mpack_snprintf(buffer, buffer_size, "map of %u key-value pairs", tag.v.n); return; } mpack_snprintf(buffer, buffer_size, "unknown!"); } void mpack_tag_debug_describe(mpack_tag_t tag, char* buffer, size_t buffer_size) { mpack_assert(buffer_size > 0, "buffer size cannot be zero!"); buffer[0] = 0; mpack_tag_debug_describe_impl(tag, buffer, buffer_size); // We always null-terminate the buffer manually just in case the snprintf() // function doesn't null-terminate when the string doesn't fit. buffer[buffer_size - 1] = 0; } #endif #if MPACK_READ_TRACKING || MPACK_WRITE_TRACKING #ifndef MPACK_TRACKING_INITIAL_CAPACITY // seems like a reasonable number. we grow by doubling, and it only // needs to be as long as the maximum depth of the message. #define MPACK_TRACKING_INITIAL_CAPACITY 8 #endif mpack_error_t mpack_track_init(mpack_track_t* track) { track->count = 0; track->capacity = MPACK_TRACKING_INITIAL_CAPACITY; track->elements = (mpack_track_element_t*)MPACK_MALLOC(sizeof(mpack_track_element_t) * track->capacity); if (track->elements == NULL) return mpack_error_memory; return mpack_ok; } mpack_error_t mpack_track_grow(mpack_track_t* track) { mpack_assert(track->elements, "null track elements!"); mpack_assert(track->count == track->capacity, "incorrect growing?"); size_t new_capacity = track->capacity * 2; mpack_track_element_t* new_elements = (mpack_track_element_t*)mpack_realloc(track->elements, sizeof(mpack_track_element_t) * track->count, sizeof(mpack_track_element_t) * new_capacity); if (new_elements == NULL) return mpack_error_memory; track->elements = new_elements; track->capacity = new_capacity; return mpack_ok; } mpack_error_t mpack_track_push(mpack_track_t* track, mpack_type_t type, uint64_t count) { mpack_assert(track->elements, "null track elements!"); mpack_log("track pushing %s count %i\n", mpack_type_to_string(type), (int)count); // maps have twice the number of elements (key/value pairs) if (type == mpack_type_map) count *= 2; // grow if needed if (track->count == track->capacity) { mpack_error_t error = mpack_track_grow(track); if (error != mpack_ok) return error; } // insert new track track->elements[track->count].type = type; track->elements[track->count].left = count; ++track->count; return mpack_ok; } mpack_error_t mpack_track_pop(mpack_track_t* track, mpack_type_t type) { mpack_assert(track->elements, "null track elements!"); mpack_log("track popping %s\n", mpack_type_to_string(type)); if (track->count == 0) { mpack_break("attempting to close a %s but nothing was opened!", mpack_type_to_string(type)); return mpack_error_bug; } mpack_track_element_t* element = &track->elements[track->count - 1]; if (element->type != type) { mpack_break("attempting to close a %s but the open element is a %s!", mpack_type_to_string(type), mpack_type_to_string(element->type)); return mpack_error_bug; } if (element->left != 0) { mpack_break("attempting to close a %s but there are %" PRIu64 " %s left", mpack_type_to_string(type), element->left, (type == mpack_type_map || type == mpack_type_array) ? "elements" : "bytes"); return mpack_error_bug; } --track->count; return mpack_ok; } mpack_error_t mpack_track_peek_element(mpack_track_t* track, bool read) { MPACK_UNUSED(read); mpack_assert(track->elements, "null track elements!"); // if there are no open elements, that's fine, we can read/write elements at will if (track->count == 0) return mpack_ok; mpack_track_element_t* element = &track->elements[track->count - 1]; if (element->type != mpack_type_map && element->type != mpack_type_array) { mpack_break("elements cannot be %s within an %s", read ? "read" : "written", mpack_type_to_string(element->type)); return mpack_error_bug; } if (element->left == 0) { mpack_break("too many elements %s for %s", read ? "read" : "written", mpack_type_to_string(element->type)); return mpack_error_bug; } return mpack_ok; } mpack_error_t mpack_track_element(mpack_track_t* track, bool read) { mpack_error_t error = mpack_track_peek_element(track, read); if (track->count > 0 && error == mpack_ok) --track->elements[track->count - 1].left; return error; } mpack_error_t mpack_track_bytes(mpack_track_t* track, bool read, uint64_t count) { MPACK_UNUSED(read); mpack_assert(track->elements, "null track elements!"); if (track->count == 0) { mpack_break("bytes cannot be %s with no open bin, str or ext", read ? "read" : "written"); return mpack_error_bug; } mpack_track_element_t* element = &track->elements[track->count - 1]; if (element->type == mpack_type_map || element->type == mpack_type_array) { mpack_break("bytes cannot be %s within an %s", read ? "read" : "written", mpack_type_to_string(element->type)); return mpack_error_bug; } if (element->left < count) { mpack_break("too many bytes %s for %s", read ? "read" : "written", mpack_type_to_string(element->type)); return mpack_error_bug; } element->left -= count; return mpack_ok; } mpack_error_t mpack_track_str_bytes_all(mpack_track_t* track, bool read, uint64_t count) { mpack_error_t error = mpack_track_bytes(track, read, count); if (error != mpack_ok) return error; mpack_track_element_t* element = &track->elements[track->count - 1]; if (element->type != mpack_type_str) { mpack_break("the open type must be a string, not a %s", mpack_type_to_string(element->type)); return mpack_error_bug; } if (element->left != 0) { mpack_break("not all bytes were read; the wrong byte count was requested for a string read."); return mpack_error_bug; } return mpack_ok; } mpack_error_t mpack_track_check_empty(mpack_track_t* track) { if (track->count != 0) { mpack_break("unclosed %s", mpack_type_to_string(track->elements[0].type)); return mpack_error_bug; } return mpack_ok; } mpack_error_t mpack_track_destroy(mpack_track_t* track, bool cancel) { mpack_error_t error = cancel ? mpack_ok : mpack_track_check_empty(track); if (track->elements) { MPACK_FREE(track->elements); track->elements = NULL; } return error; } #endif static bool mpack_utf8_check_impl(const uint8_t* str, size_t count, bool allow_null) { while (count > 0) { uint8_t lead = str[0]; // NUL if (!allow_null && lead == '\0') // we don't allow NUL bytes in MPack C-strings return false; // ASCII if (lead <= 0x7F) { ++str; --count; // 2-byte sequence } else if ((lead & 0xE0) == 0xC0) { if (count < 2) // truncated sequence return false; uint8_t cont = str[1]; if ((cont & 0xC0) != 0x80) // not a continuation byte return false; str += 2; count -= 2; uint32_t z = ((uint32_t)(lead & ~0xE0) << 6) | (uint32_t)(cont & ~0xC0); if (z < 0x80) // overlong sequence return false; // 3-byte sequence } else if ((lead & 0xF0) == 0xE0) { if (count < 3) // truncated sequence return false; uint8_t cont1 = str[1]; if ((cont1 & 0xC0) != 0x80) // not a continuation byte return false; uint8_t cont2 = str[2]; if ((cont2 & 0xC0) != 0x80) // not a continuation byte return false; str += 3; count -= 3; uint32_t z = ((uint32_t)(lead & ~0xF0) << 12) | ((uint32_t)(cont1 & ~0xC0) << 6) | (uint32_t)(cont2 & ~0xC0); if (z < 0x800) // overlong sequence return false; if (z >= 0xD800 && z <= 0xDFFF) // surrogate return false; // 4-byte sequence } else if ((lead & 0xF8) == 0xF0) { if (count < 4) // truncated sequence return false; uint8_t cont1 = str[1]; if ((cont1 & 0xC0) != 0x80) // not a continuation byte return false; uint8_t cont2 = str[2]; if ((cont2 & 0xC0) != 0x80) // not a continuation byte return false; uint8_t cont3 = str[3]; if ((cont3 & 0xC0) != 0x80) // not a continuation byte return false; str += 4; count -= 4; uint32_t z = ((uint32_t)(lead & ~0xF8) << 18) | ((uint32_t)(cont1 & ~0xC0) << 12) | ((uint32_t)(cont2 & ~0xC0) << 6) | (uint32_t)(cont3 & ~0xC0); if (z < 0x10000) // overlong sequence return false; if (z > 0x10FFFF) // codepoint limit return false; } else { return false; // continuation byte without a lead, or lead for a 5-byte sequence or longer } } return true; } bool mpack_utf8_check(const char* str, size_t bytes) { return mpack_utf8_check_impl((const uint8_t*)str, bytes, true); } bool mpack_utf8_check_no_null(const char* str, size_t bytes) { return mpack_utf8_check_impl((const uint8_t*)str, bytes, false); } bool mpack_str_check_no_null(const char* str, size_t bytes) { for (size_t i = 0; i < bytes; ++i) if (str[i] == '\0') return false; return true; } #if MPACK_DEBUG && MPACK_STDIO void mpack_print_append(mpack_print_t* print, const char* data, size_t count) { // copy whatever fits into the buffer size_t copy = print->size - print->count; if (copy > count) copy = count; mpack_memcpy(print->buffer + print->count, data, copy); print->count += copy; data += copy; count -= copy; // if we don't need to flush or can't flush there's nothing else to do if (count == 0 || print->callback == NULL) return; // flush the buffer print->callback(print->context, print->buffer, print->count); if (count > print->size / 2) { // flush the rest of the data print->count = 0; print->callback(print->context, data, count); } else { // copy the rest of the data into the buffer mpack_memcpy(print->buffer, data, count); print->count = count; } } void mpack_print_flush(mpack_print_t* print) { if (print->count > 0 && print->callback != NULL) { print->callback(print->context, print->buffer, print->count); print->count = 0; } } void mpack_print_file_callback(void* context, const char* data, size_t count) { FILE* file = (FILE*)context; fwrite(data, 1, count, file); } #endif /* mpack/mpack-writer.c.c */ #define MPACK_INTERNAL 1 /* #include "mpack-writer.h" */ #if MPACK_WRITER #if MPACK_WRITE_TRACKING static void mpack_writer_flag_if_error(mpack_writer_t* writer, mpack_error_t error) { if (error != mpack_ok) mpack_writer_flag_error(writer, error); } void mpack_writer_track_push(mpack_writer_t* writer, mpack_type_t type, uint64_t count) { if (writer->error == mpack_ok) mpack_writer_flag_if_error(writer, mpack_track_push(&writer->track, type, count)); } void mpack_writer_track_pop(mpack_writer_t* writer, mpack_type_t type) { if (writer->error == mpack_ok) mpack_writer_flag_if_error(writer, mpack_track_pop(&writer->track, type)); } void mpack_writer_track_element(mpack_writer_t* writer) { if (writer->error == mpack_ok) mpack_writer_flag_if_error(writer, mpack_track_element(&writer->track, false)); } void mpack_writer_track_bytes(mpack_writer_t* writer, size_t count) { if (writer->error == mpack_ok) mpack_writer_flag_if_error(writer, mpack_track_bytes(&writer->track, false, count)); } #endif static void mpack_writer_clear(mpack_writer_t* writer) { #if MPACK_COMPATIBILITY writer->version = mpack_version_current; #endif writer->flush = NULL; writer->error_fn = NULL; writer->teardown = NULL; writer->context = NULL; writer->buffer = NULL; writer->current = NULL; writer->end = NULL; writer->error = mpack_ok; #if MPACK_WRITE_TRACKING mpack_memset(&writer->track, 0, sizeof(writer->track)); #endif } void mpack_writer_init(mpack_writer_t* writer, char* buffer, size_t size) { mpack_assert(buffer != NULL, "cannot initialize writer with empty buffer"); mpack_writer_clear(writer); writer->buffer = buffer; writer->current = buffer; writer->end = writer->buffer + size; #if MPACK_WRITE_TRACKING mpack_writer_flag_if_error(writer, mpack_track_init(&writer->track)); #endif mpack_log("===========================\n"); mpack_log("initializing writer with buffer size %i\n", (int)size); } void mpack_writer_init_error(mpack_writer_t* writer, mpack_error_t error) { mpack_writer_clear(writer); writer->error = error; mpack_log("===========================\n"); mpack_log("initializing writer in error state %i\n", (int)error); } void mpack_writer_set_flush(mpack_writer_t* writer, mpack_writer_flush_t flush) { MPACK_STATIC_ASSERT(MPACK_WRITER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE, "minimum buffer size must fit any tag!"); MPACK_STATIC_ASSERT(31 + MPACK_TAG_SIZE_FIXSTR >= MPACK_WRITER_MINIMUM_BUFFER_SIZE, "minimum buffer size must fit the largest possible fixstr!"); if (mpack_writer_buffer_size(writer) < MPACK_WRITER_MINIMUM_BUFFER_SIZE) { mpack_break("buffer size is %i, but minimum buffer size for flush is %i", (int)mpack_writer_buffer_size(writer), MPACK_WRITER_MINIMUM_BUFFER_SIZE); mpack_writer_flag_error(writer, mpack_error_bug); return; } writer->flush = flush; } #ifdef MPACK_MALLOC typedef struct mpack_growable_writer_t { char** target_data; size_t* target_size; } mpack_growable_writer_t; static char* mpack_writer_get_reserved(mpack_writer_t* writer) { // This is in a separate function in order to avoid false strict aliasing // warnings. We aren't actually violating strict aliasing (the reserved // space is only ever dereferenced as an mpack_growable_writer_t.) return (char*)writer->reserved; } static void mpack_growable_writer_flush(mpack_writer_t* writer, const char* data, size_t count) { // This is an intrusive flush function which modifies the writer's buffer // in response to a flush instead of emptying it in order to add more // capacity for data. This removes the need to copy data from a fixed buffer // into a growable one, improving performance. // // There are three ways flush can be called: // - flushing the buffer during writing (used is zero, count is all data, data is buffer) // - flushing extra data during writing (used is all flushed data, count is extra data, data is not buffer) // - flushing during teardown (used and count are both all flushed data, data is buffer) // // In the first two cases, we grow the buffer by at least double, enough // to ensure that new data will fit. We ignore the teardown flush. if (data == writer->buffer) { // teardown, do nothing if (mpack_writer_buffer_used(writer) == count) return; // otherwise leave the data in the buffer and just grow writer->current = writer->buffer + count; count = 0; } size_t used = mpack_writer_buffer_used(writer); size_t size = mpack_writer_buffer_size(writer); mpack_log("flush size %i used %i data %p buffer %p\n", (int)count, (int)used, data, writer->buffer); mpack_assert(data == writer->buffer || used + count > size, "extra flush for %i but there is %i space left in the buffer! (%i/%i)", (int)count, (int)mpack_writer_buffer_left(writer), (int)used, (int)size); // grow to fit the data // TODO: this really needs to correctly test for overflow size_t new_size = size * 2; while (new_size < used + count) new_size *= 2; mpack_log("flush growing buffer size from %i to %i\n", (int)size, (int)new_size); // grow the buffer char* new_buffer = (char*)mpack_realloc(writer->buffer, used, new_size); if (new_buffer == NULL) { mpack_writer_flag_error(writer, mpack_error_memory); return; } writer->current = new_buffer + used; writer->buffer = new_buffer; writer->end = writer->buffer + new_size; // append the extra data if (count > 0) { mpack_memcpy(writer->current, data, count); writer->current += count; } mpack_log("new buffer %p, used %i\n", new_buffer, (int)mpack_writer_buffer_used(writer)); } static void mpack_growable_writer_teardown(mpack_writer_t* writer) { mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer); if (mpack_writer_error(writer) == mpack_ok) { // shrink the buffer to an appropriate size if the data is // much smaller than the buffer if (mpack_writer_buffer_used(writer) < mpack_writer_buffer_size(writer) / 2) { size_t used = mpack_writer_buffer_used(writer); // We always return a non-null pointer that must be freed, even if // nothing was written. malloc() and realloc() do not necessarily // do this so we enforce it ourselves. size_t size = (used != 0) ? used : 1; char* buffer = (char*)mpack_realloc(writer->buffer, used, size); if (!buffer) { MPACK_FREE(writer->buffer); mpack_writer_flag_error(writer, mpack_error_memory); return; } writer->buffer = buffer; writer->end = (writer->current = writer->buffer + used); } *growable_writer->target_data = writer->buffer; *growable_writer->target_size = mpack_writer_buffer_used(writer); writer->buffer = NULL; } else if (writer->buffer) { MPACK_FREE(writer->buffer); writer->buffer = NULL; } writer->context = NULL; } void mpack_writer_init_growable(mpack_writer_t* writer, char** target_data, size_t* target_size) { mpack_assert(target_data != NULL, "cannot initialize writer without a destination for the data"); mpack_assert(target_size != NULL, "cannot initialize writer without a destination for the size"); *target_data = NULL; *target_size = 0; MPACK_STATIC_ASSERT(sizeof(mpack_growable_writer_t) <= sizeof(writer->reserved), "not enough reserved space for growable writer!"); mpack_growable_writer_t* growable_writer = (mpack_growable_writer_t*)mpack_writer_get_reserved(writer); growable_writer->target_data = target_data; growable_writer->target_size = target_size; size_t capacity = MPACK_BUFFER_SIZE; char* buffer = (char*)MPACK_MALLOC(capacity); if (buffer == NULL) { mpack_writer_init_error(writer, mpack_error_memory); return; } mpack_writer_init(writer, buffer, capacity); mpack_writer_set_flush(writer, mpack_growable_writer_flush); mpack_writer_set_teardown(writer, mpack_growable_writer_teardown); } #endif #if MPACK_STDIO static void mpack_file_writer_flush(mpack_writer_t* writer, const char* buffer, size_t count) { FILE* file = (FILE*)writer->context; size_t written = fwrite((const void*)buffer, 1, count, file); if (written != count) mpack_writer_flag_error(writer, mpack_error_io); } static void mpack_file_writer_teardown(mpack_writer_t* writer) { MPACK_FREE(writer->buffer); writer->buffer = NULL; writer->context = NULL; } static void mpack_file_writer_teardown_close(mpack_writer_t* writer) { FILE* file = (FILE*)writer->context; if (file) { int ret = fclose(file); if (ret != 0) mpack_writer_flag_error(writer, mpack_error_io); } mpack_file_writer_teardown(writer); } void mpack_writer_init_stdfile(mpack_writer_t* writer, FILE* file, bool close_when_done) { mpack_assert(file != NULL, "file is NULL"); size_t capacity = MPACK_BUFFER_SIZE; char* buffer = (char*)MPACK_MALLOC(capacity); if (buffer == NULL) { mpack_writer_init_error(writer, mpack_error_memory); if (close_when_done) { fclose(file); } return; } mpack_writer_init(writer, buffer, capacity); mpack_writer_set_context(writer, file); mpack_writer_set_flush(writer, mpack_file_writer_flush); mpack_writer_set_teardown(writer, close_when_done ? mpack_file_writer_teardown_close : mpack_file_writer_teardown); } void mpack_writer_init_filename(mpack_writer_t* writer, const char* filename) { mpack_assert(filename != NULL, "filename is NULL"); FILE* file = fopen(filename, "wb"); if (file == NULL) { mpack_writer_init_error(writer, mpack_error_io); return; } mpack_writer_init_stdfile(writer, file, true); } #endif void mpack_writer_flag_error(mpack_writer_t* writer, mpack_error_t error) { mpack_log("writer %p setting error %i: %s\n", writer, (int)error, mpack_error_to_string(error)); if (writer->error == mpack_ok) { writer->error = error; if (writer->error_fn) writer->error_fn(writer, writer->error); } } MPACK_STATIC_INLINE void mpack_writer_flush_unchecked(mpack_writer_t* writer) { // This is a bit ugly; we reset used before calling flush so that // a flush function can distinguish between flushing the buffer // versus flushing external data. see mpack_growable_writer_flush() size_t used = mpack_writer_buffer_used(writer); writer->current = writer->buffer; writer->flush(writer, writer->buffer, used); } void mpack_writer_flush_message(mpack_writer_t* writer) { if (writer->error != mpack_ok) return; #if MPACK_WRITE_TRACKING mpack_writer_flag_if_error(writer, mpack_track_check_empty(&writer->track)); if (writer->error != mpack_ok) return; #endif if (writer->flush == NULL) { mpack_break("cannot call mpack_writer_flush_message() without a flush function!"); mpack_writer_flag_error(writer, mpack_error_bug); return; } if (mpack_writer_buffer_used(writer) > 0) mpack_writer_flush_unchecked(writer); } // Ensures there are at least count bytes free in the buffer. This // will flag an error if the flush function fails to make enough // room in the buffer. MPACK_NOINLINE static bool mpack_writer_ensure(mpack_writer_t* writer, size_t count) { mpack_assert(count != 0, "cannot ensure zero bytes!"); mpack_assert(count <= MPACK_WRITER_MINIMUM_BUFFER_SIZE, "cannot ensure %i bytes, this is more than the minimum buffer size %i!", (int)count, (int)MPACK_WRITER_MINIMUM_BUFFER_SIZE); mpack_assert(count > mpack_writer_buffer_left(writer), "request to ensure %i bytes but there are already %i left in the buffer!", (int)count, (int)mpack_writer_buffer_left(writer)); mpack_log("ensuring %i bytes, %i left\n", (int)count, (int)mpack_writer_buffer_left(writer)); if (mpack_writer_error(writer) != mpack_ok) return false; if (writer->flush == NULL) { mpack_writer_flag_error(writer, mpack_error_too_big); return false; } mpack_writer_flush_unchecked(writer); if (mpack_writer_error(writer) != mpack_ok) return false; if (mpack_writer_buffer_left(writer) >= count) return true; mpack_writer_flag_error(writer, mpack_error_io); return false; } // Writes encoded bytes to the buffer when we already know the data // does not fit in the buffer (i.e. it straddles the edge of the // buffer.) If there is a flush function, it is guaranteed to be // called; otherwise mpack_error_too_big is raised. MPACK_NOINLINE static void mpack_write_native_straddle(mpack_writer_t* writer, const char* p, size_t count) { mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); if (mpack_writer_error(writer) != mpack_ok) return; mpack_log("big write for %i bytes from %p, %i space left in buffer\n", (int)count, p, (int)mpack_writer_buffer_left(writer)); mpack_assert(count > mpack_writer_buffer_left(writer), "big write requested for %i bytes, but there is %i available " "space in buffer. should have called mpack_write_native() instead", (int)count, (int)(mpack_writer_buffer_left(writer))); // we'll need a flush function if (!writer->flush) { mpack_writer_flag_error(writer, mpack_error_too_big); return; } // flush the buffer mpack_writer_flush_unchecked(writer); if (mpack_writer_error(writer) != mpack_ok) return; // note that an intrusive flush function (such as mpack_growable_writer_flush()) // may have changed size and/or reset used to a non-zero value. we treat both as // though they may have changed, and there may still be data in the buffer. // flush the extra data directly if it doesn't fit in the buffer if (count > mpack_writer_buffer_left(writer)) { writer->flush(writer, p, count); if (mpack_writer_error(writer) != mpack_ok) return; } else { mpack_memcpy(writer->current, p, count); writer->current += count; } } // Writes encoded bytes to the buffer, flushing if necessary. MPACK_STATIC_INLINE void mpack_write_native(mpack_writer_t* writer, const char* p, size_t count) { mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); if (mpack_writer_buffer_left(writer) < count) { mpack_write_native_straddle(writer, p, count); } else { mpack_memcpy(writer->current, p, count); writer->current += count; } } mpack_error_t mpack_writer_destroy(mpack_writer_t* writer) { // clean up tracking, asserting if we're not already in an error state #if MPACK_WRITE_TRACKING mpack_track_destroy(&writer->track, writer->error != mpack_ok); #endif // flush any outstanding data if (mpack_writer_error(writer) == mpack_ok && mpack_writer_buffer_used(writer) != 0 && writer->flush != NULL) { writer->flush(writer, writer->buffer, mpack_writer_buffer_used(writer)); writer->flush = NULL; } if (writer->teardown) { writer->teardown(writer); writer->teardown = NULL; } return writer->error; } void mpack_write_tag(mpack_writer_t* writer, mpack_tag_t value) { switch (value.type) { case mpack_type_missing: mpack_break("cannot write a missing value!"); mpack_writer_flag_error(writer, mpack_error_bug); return; case mpack_type_nil: mpack_write_nil (writer); return; case mpack_type_bool: mpack_write_bool (writer, value.v.b); return; case mpack_type_float: mpack_write_float (writer, value.v.f); return; case mpack_type_double: mpack_write_double(writer, value.v.d); return; case mpack_type_int: mpack_write_int (writer, value.v.i); return; case mpack_type_uint: mpack_write_uint (writer, value.v.u); return; case mpack_type_str: mpack_start_str(writer, value.v.l); return; case mpack_type_bin: mpack_start_bin(writer, value.v.l); return; #if MPACK_EXTENSIONS case mpack_type_ext: mpack_start_ext(writer, mpack_tag_ext_exttype(&value), mpack_tag_ext_length(&value)); return; #endif case mpack_type_array: mpack_start_array(writer, value.v.n); return; case mpack_type_map: mpack_start_map(writer, value.v.n); return; } mpack_break("unrecognized type %i", (int)value.type); mpack_writer_flag_error(writer, mpack_error_bug); } MPACK_STATIC_INLINE void mpack_write_byte_element(mpack_writer_t* writer, char value) { mpack_writer_track_element(writer); if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= 1) || mpack_writer_ensure(writer, 1)) *(writer->current++) = value; } void mpack_write_nil(mpack_writer_t* writer) { mpack_write_byte_element(writer, (char)0xc0); } void mpack_write_bool(mpack_writer_t* writer, bool value) { mpack_write_byte_element(writer, (char)(0xc2 | (value ? 1 : 0))); } void mpack_write_true(mpack_writer_t* writer) { mpack_write_byte_element(writer, (char)0xc3); } void mpack_write_false(mpack_writer_t* writer) { mpack_write_byte_element(writer, (char)0xc2); } void mpack_write_object_bytes(mpack_writer_t* writer, const char* data, size_t bytes) { mpack_writer_track_element(writer); mpack_write_native(writer, data, bytes); } /* * Encode functions */ MPACK_STATIC_INLINE void mpack_encode_fixuint(char* p, uint8_t value) { mpack_assert(value <= 127); mpack_store_u8(p, value); } MPACK_STATIC_INLINE void mpack_encode_u8(char* p, uint8_t value) { mpack_assert(value > 127); mpack_store_u8(p, 0xcc); mpack_store_u8(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_u16(char* p, uint16_t value) { mpack_assert(value > UINT8_MAX); mpack_store_u8(p, 0xcd); mpack_store_u16(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_u32(char* p, uint32_t value) { mpack_assert(value > UINT16_MAX); mpack_store_u8(p, 0xce); mpack_store_u32(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_u64(char* p, uint64_t value) { mpack_assert(value > UINT32_MAX); mpack_store_u8(p, 0xcf); mpack_store_u64(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_fixint(char* p, int8_t value) { // this can encode positive or negative fixints mpack_assert(value >= -32); mpack_store_i8(p, value); } MPACK_STATIC_INLINE void mpack_encode_i8(char* p, int8_t value) { mpack_assert(value < -32); mpack_store_u8(p, 0xd0); mpack_store_i8(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_i16(char* p, int16_t value) { mpack_assert(value < INT8_MIN); mpack_store_u8(p, 0xd1); mpack_store_i16(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_i32(char* p, int32_t value) { mpack_assert(value < INT16_MIN); mpack_store_u8(p, 0xd2); mpack_store_i32(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_i64(char* p, int64_t value) { mpack_assert(value < INT32_MIN); mpack_store_u8(p, 0xd3); mpack_store_i64(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_float(char* p, float value) { mpack_store_u8(p, 0xca); mpack_store_float(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_double(char* p, double value) { mpack_store_u8(p, 0xcb); mpack_store_double(p + 1, value); } MPACK_STATIC_INLINE void mpack_encode_fixarray(char* p, uint8_t count) { mpack_assert(count <= 15); mpack_store_u8(p, (uint8_t)(0x90 | count)); } MPACK_STATIC_INLINE void mpack_encode_array16(char* p, uint16_t count) { mpack_assert(count > 15); mpack_store_u8(p, 0xdc); mpack_store_u16(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_array32(char* p, uint32_t count) { mpack_assert(count > UINT16_MAX); mpack_store_u8(p, 0xdd); mpack_store_u32(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_fixmap(char* p, uint8_t count) { mpack_assert(count <= 15); mpack_store_u8(p, (uint8_t)(0x80 | count)); } MPACK_STATIC_INLINE void mpack_encode_map16(char* p, uint16_t count) { mpack_assert(count > 15); mpack_store_u8(p, 0xde); mpack_store_u16(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_map32(char* p, uint32_t count) { mpack_assert(count > UINT16_MAX); mpack_store_u8(p, 0xdf); mpack_store_u32(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_fixstr(char* p, uint8_t count) { mpack_assert(count <= 31); mpack_store_u8(p, (uint8_t)(0xa0 | count)); } MPACK_STATIC_INLINE void mpack_encode_str8(char* p, uint8_t count) { mpack_assert(count > 31); mpack_store_u8(p, 0xd9); mpack_store_u8(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_str16(char* p, uint16_t count) { // we might be encoding a raw in compatibility mode, so we // allow count to be in the range [32, UINT8_MAX]. mpack_assert(count > 31); mpack_store_u8(p, 0xda); mpack_store_u16(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_str32(char* p, uint32_t count) { mpack_assert(count > UINT16_MAX); mpack_store_u8(p, 0xdb); mpack_store_u32(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_bin8(char* p, uint8_t count) { mpack_store_u8(p, 0xc4); mpack_store_u8(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_bin16(char* p, uint16_t count) { mpack_assert(count > UINT8_MAX); mpack_store_u8(p, 0xc5); mpack_store_u16(p + 1, count); } MPACK_STATIC_INLINE void mpack_encode_bin32(char* p, uint32_t count) { mpack_assert(count > UINT16_MAX); mpack_store_u8(p, 0xc6); mpack_store_u32(p + 1, count); } #if MPACK_EXTENSIONS MPACK_STATIC_INLINE void mpack_encode_fixext1(char* p, int8_t exttype) { mpack_store_u8(p, 0xd4); mpack_store_i8(p + 1, exttype); } MPACK_STATIC_INLINE void mpack_encode_fixext2(char* p, int8_t exttype) { mpack_store_u8(p, 0xd5); mpack_store_i8(p + 1, exttype); } MPACK_STATIC_INLINE void mpack_encode_fixext4(char* p, int8_t exttype) { mpack_store_u8(p, 0xd6); mpack_store_i8(p + 1, exttype); } MPACK_STATIC_INLINE void mpack_encode_fixext8(char* p, int8_t exttype) { mpack_store_u8(p, 0xd7); mpack_store_i8(p + 1, exttype); } MPACK_STATIC_INLINE void mpack_encode_fixext16(char* p, int8_t exttype) { mpack_store_u8(p, 0xd8); mpack_store_i8(p + 1, exttype); } MPACK_STATIC_INLINE void mpack_encode_ext8(char* p, int8_t exttype, uint8_t count) { mpack_assert(count != 1 && count != 2 && count != 4 && count != 8 && count != 16); mpack_store_u8(p, 0xc7); mpack_store_u8(p + 1, count); mpack_store_i8(p + 2, exttype); } MPACK_STATIC_INLINE void mpack_encode_ext16(char* p, int8_t exttype, uint16_t count) { mpack_assert(count > UINT8_MAX); mpack_store_u8(p, 0xc8); mpack_store_u16(p + 1, count); mpack_store_i8(p + 3, exttype); } MPACK_STATIC_INLINE void mpack_encode_ext32(char* p, int8_t exttype, uint32_t count) { mpack_assert(count > UINT16_MAX); mpack_store_u8(p, 0xc9); mpack_store_u32(p + 1, count); mpack_store_i8(p + 5, exttype); } MPACK_STATIC_INLINE void mpack_encode_timestamp_4(char* p, uint32_t seconds) { mpack_encode_fixext4(p, MPACK_EXTTYPE_TIMESTAMP); mpack_store_u32(p + MPACK_TAG_SIZE_FIXEXT4, seconds); } MPACK_STATIC_INLINE void mpack_encode_timestamp_8(char* p, int64_t seconds, uint32_t nanoseconds) { mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX); mpack_encode_fixext8(p, MPACK_EXTTYPE_TIMESTAMP); uint64_t encoded = ((uint64_t)nanoseconds << 34) | (uint64_t)seconds; mpack_store_u64(p + MPACK_TAG_SIZE_FIXEXT8, encoded); } MPACK_STATIC_INLINE void mpack_encode_timestamp_12(char* p, int64_t seconds, uint32_t nanoseconds) { mpack_assert(nanoseconds <= MPACK_TIMESTAMP_NANOSECONDS_MAX); mpack_encode_ext8(p, MPACK_EXTTYPE_TIMESTAMP, 12); mpack_store_u32(p + MPACK_TAG_SIZE_EXT8, nanoseconds); mpack_store_i64(p + MPACK_TAG_SIZE_EXT8 + 4, seconds); } #endif /* * Write functions */ // This is a macro wrapper to the encode functions to encode // directly into the buffer. If mpack_writer_ensure() fails // it will flag an error so we don't have to do anything. #define MPACK_WRITE_ENCODED(encode_fn, size, ...) do { \ if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) { \ MPACK_EXPAND(encode_fn(writer->current, __VA_ARGS__)); \ writer->current += size; \ } \ } while (0) void mpack_write_u8(mpack_writer_t* writer, uint8_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_u64(writer, value); #else mpack_writer_track_element(writer); if (value <= 127) { MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, value); } else { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, value); } #endif } void mpack_write_u16(mpack_writer_t* writer, uint16_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_u64(writer, value); #else mpack_writer_track_element(writer); if (value <= 127) { MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, value); } #endif } void mpack_write_u32(mpack_writer_t* writer, uint32_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_u64(writer, value); #else mpack_writer_track_element(writer); if (value <= 127) { MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else if (value <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, value); } #endif } void mpack_write_u64(mpack_writer_t* writer, uint64_t value) { mpack_writer_track_element(writer); if (value <= 127) { MPACK_WRITE_ENCODED(mpack_encode_fixuint, MPACK_TAG_SIZE_FIXUINT, (uint8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else if (value <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); } else if (value <= UINT32_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, value); } } void mpack_write_i8(mpack_writer_t* writer, int8_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_i64(writer, value); #else mpack_writer_track_element(writer); if (value >= -32) { // we encode positive and negative fixints together MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); } #endif } void mpack_write_i16(mpack_writer_t* writer, int16_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_i64(writer, value); #else mpack_writer_track_element(writer); if (value >= -32) { if (value <= 127) { // we encode positive and negative fixints together MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); } } else if (value >= INT8_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); } #endif } void mpack_write_i32(mpack_writer_t* writer, int32_t value) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_write_i64(writer, value); #else mpack_writer_track_element(writer); if (value >= -32) { if (value <= 127) { // we encode positive and negative fixints together MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else if (value <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); } } else if (value >= INT8_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); } else if (value >= INT16_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, value); } #endif } void mpack_write_i64(mpack_writer_t* writer, int64_t value) { #if MPACK_OPTIMIZE_FOR_SIZE if (value > 127) { // for non-fix positive ints we call the u64 writer to save space mpack_write_u64(writer, (uint64_t)value); return; } #endif mpack_writer_track_element(writer); if (value >= -32) { #if MPACK_OPTIMIZE_FOR_SIZE MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); #else if (value <= 127) { MPACK_WRITE_ENCODED(mpack_encode_fixint, MPACK_TAG_SIZE_FIXINT, (int8_t)value); } else if (value <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u8, MPACK_TAG_SIZE_U8, (uint8_t)value); } else if (value <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u16, MPACK_TAG_SIZE_U16, (uint16_t)value); } else if (value <= UINT32_MAX) { MPACK_WRITE_ENCODED(mpack_encode_u32, MPACK_TAG_SIZE_U32, (uint32_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_u64, MPACK_TAG_SIZE_U64, (uint64_t)value); } #endif } else if (value >= INT8_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i8, MPACK_TAG_SIZE_I8, (int8_t)value); } else if (value >= INT16_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i16, MPACK_TAG_SIZE_I16, (int16_t)value); } else if (value >= INT32_MIN) { MPACK_WRITE_ENCODED(mpack_encode_i32, MPACK_TAG_SIZE_I32, (int32_t)value); } else { MPACK_WRITE_ENCODED(mpack_encode_i64, MPACK_TAG_SIZE_I64, value); } } void mpack_write_float(mpack_writer_t* writer, float value) { mpack_writer_track_element(writer); MPACK_WRITE_ENCODED(mpack_encode_float, MPACK_TAG_SIZE_FLOAT, value); } void mpack_write_double(mpack_writer_t* writer, double value) { mpack_writer_track_element(writer); MPACK_WRITE_ENCODED(mpack_encode_double, MPACK_TAG_SIZE_DOUBLE, value); } #if MPACK_EXTENSIONS void mpack_write_timestamp(mpack_writer_t* writer, int64_t seconds, uint32_t nanoseconds) { #if MPACK_COMPATIBILITY if (writer->version <= mpack_version_v4) { mpack_break("Timestamps require spec version v5 or later. This writer is in v%i mode.", (int)writer->version); mpack_writer_flag_error(writer, mpack_error_bug); return; } #endif if (nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { mpack_break("timestamp nanoseconds out of bounds: %u", nanoseconds); mpack_writer_flag_error(writer, mpack_error_bug); return; } mpack_writer_track_element(writer); if (seconds < 0 || seconds >= (INT64_C(1) << 34)) { MPACK_WRITE_ENCODED(mpack_encode_timestamp_12, MPACK_EXT_SIZE_TIMESTAMP12, seconds, nanoseconds); } else if (seconds > UINT32_MAX || nanoseconds > 0) { MPACK_WRITE_ENCODED(mpack_encode_timestamp_8, MPACK_EXT_SIZE_TIMESTAMP8, seconds, nanoseconds); } else { MPACK_WRITE_ENCODED(mpack_encode_timestamp_4, MPACK_EXT_SIZE_TIMESTAMP4, (uint32_t)seconds); } } #endif void mpack_start_array(mpack_writer_t* writer, uint32_t count) { mpack_writer_track_element(writer); if (count <= 15) { MPACK_WRITE_ENCODED(mpack_encode_fixarray, MPACK_TAG_SIZE_FIXARRAY, (uint8_t)count); } else if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_array16, MPACK_TAG_SIZE_ARRAY16, (uint16_t)count); } else { MPACK_WRITE_ENCODED(mpack_encode_array32, MPACK_TAG_SIZE_ARRAY32, (uint32_t)count); } mpack_writer_track_push(writer, mpack_type_array, count); } void mpack_start_map(mpack_writer_t* writer, uint32_t count) { mpack_writer_track_element(writer); if (count <= 15) { MPACK_WRITE_ENCODED(mpack_encode_fixmap, MPACK_TAG_SIZE_FIXMAP, (uint8_t)count); } else if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_map16, MPACK_TAG_SIZE_MAP16, (uint16_t)count); } else { MPACK_WRITE_ENCODED(mpack_encode_map32, MPACK_TAG_SIZE_MAP32, (uint32_t)count); } mpack_writer_track_push(writer, mpack_type_map, count); } static void mpack_start_str_notrack(mpack_writer_t* writer, uint32_t count) { if (count <= 31) { MPACK_WRITE_ENCODED(mpack_encode_fixstr, MPACK_TAG_SIZE_FIXSTR, (uint8_t)count); // str8 is only supported in v5 or later. } else if (count <= UINT8_MAX #if MPACK_COMPATIBILITY && writer->version >= mpack_version_v5 #endif ) { MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count); } else if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count); } else { MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count); } } static void mpack_start_bin_notrack(mpack_writer_t* writer, uint32_t count) { #if MPACK_COMPATIBILITY // In the v4 spec, there was only the raw type for any kind of // variable-length data. In v4 mode, we support the bin functions, // but we produce an old-style raw. if (writer->version <= mpack_version_v4) { mpack_start_str_notrack(writer, count); return; } #endif if (count <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_bin8, MPACK_TAG_SIZE_BIN8, (uint8_t)count); } else if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_bin16, MPACK_TAG_SIZE_BIN16, (uint16_t)count); } else { MPACK_WRITE_ENCODED(mpack_encode_bin32, MPACK_TAG_SIZE_BIN32, (uint32_t)count); } } void mpack_start_str(mpack_writer_t* writer, uint32_t count) { mpack_writer_track_element(writer); mpack_start_str_notrack(writer, count); mpack_writer_track_push(writer, mpack_type_str, count); } void mpack_start_bin(mpack_writer_t* writer, uint32_t count) { mpack_writer_track_element(writer); mpack_start_bin_notrack(writer, count); mpack_writer_track_push(writer, mpack_type_bin, count); } #if MPACK_EXTENSIONS void mpack_start_ext(mpack_writer_t* writer, int8_t exttype, uint32_t count) { #if MPACK_COMPATIBILITY if (writer->version <= mpack_version_v4) { mpack_break("Ext types require spec version v5 or later. This writer is in v%i mode.", (int)writer->version); mpack_writer_flag_error(writer, mpack_error_bug); return; } #endif mpack_writer_track_element(writer); if (count == 1) { MPACK_WRITE_ENCODED(mpack_encode_fixext1, MPACK_TAG_SIZE_FIXEXT1, exttype); } else if (count == 2) { MPACK_WRITE_ENCODED(mpack_encode_fixext2, MPACK_TAG_SIZE_FIXEXT2, exttype); } else if (count == 4) { MPACK_WRITE_ENCODED(mpack_encode_fixext4, MPACK_TAG_SIZE_FIXEXT4, exttype); } else if (count == 8) { MPACK_WRITE_ENCODED(mpack_encode_fixext8, MPACK_TAG_SIZE_FIXEXT8, exttype); } else if (count == 16) { MPACK_WRITE_ENCODED(mpack_encode_fixext16, MPACK_TAG_SIZE_FIXEXT16, exttype); } else if (count <= UINT8_MAX) { MPACK_WRITE_ENCODED(mpack_encode_ext8, MPACK_TAG_SIZE_EXT8, exttype, (uint8_t)count); } else if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_ext16, MPACK_TAG_SIZE_EXT16, exttype, (uint16_t)count); } else { MPACK_WRITE_ENCODED(mpack_encode_ext32, MPACK_TAG_SIZE_EXT32, exttype, (uint32_t)count); } mpack_writer_track_push(writer, mpack_type_ext, count); } #endif /* * Compound helpers and other functions */ void mpack_write_str(mpack_writer_t* writer, const char* data, uint32_t count) { mpack_assert(data != NULL, "data for string of length %i is NULL", (int)count); #if MPACK_OPTIMIZE_FOR_SIZE mpack_writer_track_element(writer); mpack_start_str_notrack(writer, count); mpack_write_native(writer, data, count); #else mpack_writer_track_element(writer); if (count <= 31) { // The minimum buffer size when using a flush function is guaranteed to // fit the largest possible fixstr. size_t size = count + MPACK_TAG_SIZE_FIXSTR; if (MPACK_LIKELY(mpack_writer_buffer_left(writer) >= size) || mpack_writer_ensure(writer, size)) { char* MPACK_RESTRICT p = writer->current; mpack_encode_fixstr(p, (uint8_t)count); mpack_memcpy(p + MPACK_TAG_SIZE_FIXSTR, data, count); writer->current += count + MPACK_TAG_SIZE_FIXSTR; } return; } if (count <= UINT8_MAX #if MPACK_COMPATIBILITY && writer->version >= mpack_version_v5 #endif ) { if (count + MPACK_TAG_SIZE_STR8 <= mpack_writer_buffer_left(writer)) { char* MPACK_RESTRICT p = writer->current; mpack_encode_str8(p, (uint8_t)count); mpack_memcpy(p + MPACK_TAG_SIZE_STR8, data, count); writer->current += count + MPACK_TAG_SIZE_STR8; } else { MPACK_WRITE_ENCODED(mpack_encode_str8, MPACK_TAG_SIZE_STR8, (uint8_t)count); mpack_write_native(writer, data, count); } return; } // str16 and str32 are likely to be a significant fraction of the buffer // size, so we don't bother with a combined space check in order to // minimize code size. if (count <= UINT16_MAX) { MPACK_WRITE_ENCODED(mpack_encode_str16, MPACK_TAG_SIZE_STR16, (uint16_t)count); mpack_write_native(writer, data, count); } else { MPACK_WRITE_ENCODED(mpack_encode_str32, MPACK_TAG_SIZE_STR32, (uint32_t)count); mpack_write_native(writer, data, count); } #endif } void mpack_write_bin(mpack_writer_t* writer, const char* data, uint32_t count) { mpack_assert(data != NULL, "data pointer for bin of %i bytes is NULL", (int)count); mpack_start_bin(writer, count); mpack_write_bytes(writer, data, count); mpack_finish_bin(writer); } #if MPACK_EXTENSIONS void mpack_write_ext(mpack_writer_t* writer, int8_t exttype, const char* data, uint32_t count) { mpack_assert(data != NULL, "data pointer for ext of type %i and %i bytes is NULL", exttype, (int)count); mpack_start_ext(writer, exttype, count); mpack_write_bytes(writer, data, count); mpack_finish_ext(writer); } #endif void mpack_write_bytes(mpack_writer_t* writer, const char* data, size_t count) { mpack_assert(data != NULL, "data pointer for %i bytes is NULL", (int)count); mpack_writer_track_bytes(writer, count); mpack_write_native(writer, data, count); } void mpack_write_cstr(mpack_writer_t* writer, const char* cstr) { mpack_assert(cstr != NULL, "cstr pointer is NULL"); size_t length = mpack_strlen(cstr); if (length > UINT32_MAX) mpack_writer_flag_error(writer, mpack_error_invalid); mpack_write_str(writer, cstr, (uint32_t)length); } void mpack_write_cstr_or_nil(mpack_writer_t* writer, const char* cstr) { if (cstr) mpack_write_cstr(writer, cstr); else mpack_write_nil(writer); } void mpack_write_utf8(mpack_writer_t* writer, const char* str, uint32_t length) { mpack_assert(str != NULL, "data for string of length %i is NULL", (int)length); if (!mpack_utf8_check(str, length)) { mpack_writer_flag_error(writer, mpack_error_invalid); return; } mpack_write_str(writer, str, length); } void mpack_write_utf8_cstr(mpack_writer_t* writer, const char* cstr) { mpack_assert(cstr != NULL, "cstr pointer is NULL"); size_t length = mpack_strlen(cstr); if (length > UINT32_MAX) { mpack_writer_flag_error(writer, mpack_error_invalid); return; } mpack_write_utf8(writer, cstr, (uint32_t)length); } void mpack_write_utf8_cstr_or_nil(mpack_writer_t* writer, const char* cstr) { if (cstr) mpack_write_utf8_cstr(writer, cstr); else mpack_write_nil(writer); } #endif /* mpack/mpack-reader.c.c */ #define MPACK_INTERNAL 1 /* #include "mpack-reader.h" */ #if MPACK_READER static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count); void mpack_reader_init(mpack_reader_t* reader, char* buffer, size_t size, size_t count) { mpack_assert(buffer != NULL, "buffer is NULL"); mpack_memset(reader, 0, sizeof(*reader)); reader->buffer = buffer; reader->size = size; reader->data = buffer; reader->end = buffer + count; #if MPACK_READ_TRACKING mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track)); #endif mpack_log("===========================\n"); mpack_log("initializing reader with buffer size %i\n", (int)size); } void mpack_reader_init_error(mpack_reader_t* reader, mpack_error_t error) { mpack_memset(reader, 0, sizeof(*reader)); reader->error = error; mpack_log("===========================\n"); mpack_log("initializing reader error state %i\n", (int)error); } void mpack_reader_init_data(mpack_reader_t* reader, const char* data, size_t count) { mpack_assert(data != NULL, "data is NULL"); mpack_memset(reader, 0, sizeof(*reader)); reader->data = data; reader->end = data + count; #if MPACK_READ_TRACKING mpack_reader_flag_if_error(reader, mpack_track_init(&reader->track)); #endif mpack_log("===========================\n"); mpack_log("initializing reader with data size %i\n", (int)count); } void mpack_reader_set_fill(mpack_reader_t* reader, mpack_reader_fill_t fill) { MPACK_STATIC_ASSERT(MPACK_READER_MINIMUM_BUFFER_SIZE >= MPACK_MAXIMUM_TAG_SIZE, "minimum buffer size must fit any tag!"); if (reader->size == 0) { mpack_break("cannot use fill function without a writeable buffer!"); mpack_reader_flag_error(reader, mpack_error_bug); return; } if (reader->size < MPACK_READER_MINIMUM_BUFFER_SIZE) { mpack_break("buffer size is %i, but minimum buffer size for fill is %i", (int)reader->size, MPACK_READER_MINIMUM_BUFFER_SIZE); mpack_reader_flag_error(reader, mpack_error_bug); return; } reader->fill = fill; } void mpack_reader_set_skip(mpack_reader_t* reader, mpack_reader_skip_t skip) { mpack_assert(reader->size != 0, "cannot use skip function without a writeable buffer!"); reader->skip = skip; } #if MPACK_STDIO static size_t mpack_file_reader_fill(mpack_reader_t* reader, char* buffer, size_t count) { if (feof((FILE *)reader->context)) { mpack_reader_flag_error(reader, mpack_error_eof); return 0; } return fread((void*)buffer, 1, count, (FILE*)reader->context); } static void mpack_file_reader_skip(mpack_reader_t* reader, size_t count) { if (mpack_reader_error(reader) != mpack_ok) return; FILE* file = (FILE*)reader->context; // We call ftell() to test whether the stream is seekable // without causing a file error. if (ftell(file) >= 0) { mpack_log("seeking forward %i bytes\n", (int)count); if (fseek(file, (long int)count, SEEK_CUR) == 0) return; mpack_log("fseek() didn't return zero!\n"); if (ferror(file)) { mpack_reader_flag_error(reader, mpack_error_io); return; } } // If the stream is not seekable, fall back to the fill function. mpack_reader_skip_using_fill(reader, count); } static void mpack_file_reader_teardown(mpack_reader_t* reader) { MPACK_FREE(reader->buffer); reader->buffer = NULL; reader->context = NULL; reader->size = 0; reader->fill = NULL; reader->skip = NULL; reader->teardown = NULL; } static void mpack_file_reader_teardown_close(mpack_reader_t* reader) { FILE* file = (FILE*)reader->context; if (file) { int ret = fclose(file); if (ret != 0) mpack_reader_flag_error(reader, mpack_error_io); } mpack_file_reader_teardown(reader); } void mpack_reader_init_stdfile(mpack_reader_t* reader, FILE* file, bool close_when_done) { mpack_assert(file != NULL, "file is NULL"); size_t capacity = MPACK_BUFFER_SIZE; char* buffer = (char*)MPACK_MALLOC(capacity); if (buffer == NULL) { mpack_reader_init_error(reader, mpack_error_memory); if (close_when_done) { fclose(file); } return; } mpack_reader_init(reader, buffer, capacity, 0); mpack_reader_set_context(reader, file); mpack_reader_set_fill(reader, mpack_file_reader_fill); mpack_reader_set_skip(reader, mpack_file_reader_skip); mpack_reader_set_teardown(reader, close_when_done ? mpack_file_reader_teardown_close : mpack_file_reader_teardown); } void mpack_reader_init_filename(mpack_reader_t* reader, const char* filename) { mpack_assert(filename != NULL, "filename is NULL"); FILE* file = fopen(filename, "rb"); if (file == NULL) { mpack_reader_init_error(reader, mpack_error_io); return; } mpack_reader_init_stdfile(reader, file, true); } #endif mpack_error_t mpack_reader_destroy(mpack_reader_t* reader) { // clean up tracking, asserting if we're not already in an error state #if MPACK_READ_TRACKING mpack_reader_flag_if_error(reader, mpack_track_destroy(&reader->track, mpack_reader_error(reader) != mpack_ok)); #endif if (reader->teardown) reader->teardown(reader); reader->teardown = NULL; return reader->error; } size_t mpack_reader_remaining(mpack_reader_t* reader, const char** data) { if (mpack_reader_error(reader) != mpack_ok) return 0; #if MPACK_READ_TRACKING if (mpack_reader_flag_if_error(reader, mpack_track_check_empty(&reader->track)) != mpack_ok) return 0; #endif if (data) *data = reader->data; return (size_t)(reader->end - reader->data); } void mpack_reader_flag_error(mpack_reader_t* reader, mpack_error_t error) { mpack_log("reader %p setting error %i: %s\n", reader, (int)error, mpack_error_to_string(error)); if (reader->error == mpack_ok) { reader->error = error; reader->end = reader->data; if (reader->error_fn) reader->error_fn(reader, error); } } // Loops on the fill function, reading between the minimum and // maximum number of bytes and flagging an error if it fails. MPACK_NOINLINE static size_t mpack_fill_range(mpack_reader_t* reader, char* p, size_t min_bytes, size_t max_bytes) { mpack_assert(reader->fill != NULL, "mpack_fill_range() called with no fill function?"); mpack_assert(min_bytes > 0, "cannot fill zero bytes!"); mpack_assert(max_bytes >= min_bytes, "min_bytes %i cannot be larger than max_bytes %i!", (int)min_bytes, (int)max_bytes); size_t count = 0; while (count < min_bytes) { size_t read = reader->fill(reader, p + count, max_bytes - count); // Reader fill functions can flag an error or return 0 on failure. We // also guard against functions that -1 just in case. if (mpack_reader_error(reader) != mpack_ok) return 0; if (read == 0 || read == ((size_t)(-1))) { mpack_reader_flag_error(reader, mpack_error_io); return 0; } count += read; } return count; } MPACK_NOINLINE bool mpack_reader_ensure_straddle(mpack_reader_t* reader, size_t count) { mpack_assert(count != 0, "cannot ensure zero bytes!"); mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!"); mpack_assert(count > (size_t)(reader->end - reader->data), "straddling ensure requested for %i bytes, but there are %i bytes " "left in buffer. call mpack_reader_ensure() instead", (int)count, (int)(reader->end - reader->data)); // we'll need a fill function to get more data. if there's no // fill function, the buffer should contain an entire MessagePack // object, so we raise mpack_error_invalid instead of mpack_error_io // on truncated data. if (reader->fill == NULL) { mpack_reader_flag_error(reader, mpack_error_invalid); return false; } // we need enough space in the buffer. if the buffer is not // big enough, we return mpack_error_too_big (since this is // for an in-place read larger than the buffer size.) if (count > reader->size) { mpack_reader_flag_error(reader, mpack_error_too_big); return false; } // move the existing data to the start of the buffer size_t left = (size_t)(reader->end - reader->data); mpack_memmove(reader->buffer, reader->data, left); reader->end -= reader->data - reader->buffer; reader->data = reader->buffer; // read at least the necessary number of bytes, accepting up to the // buffer size size_t read = mpack_fill_range(reader, reader->buffer + left, count - left, reader->size - left); if (mpack_reader_error(reader) != mpack_ok) return false; reader->end += read; return true; } // Reads count bytes into p. Used when there are not enough bytes // left in the buffer to satisfy a read. MPACK_NOINLINE void mpack_read_native_straddle(mpack_reader_t* reader, char* p, size_t count) { mpack_assert(count == 0 || p != NULL, "data pointer for %i bytes is NULL", (int)count); if (mpack_reader_error(reader) != mpack_ok) { mpack_memset(p, 0, count); return; } size_t left = (size_t)(reader->end - reader->data); mpack_log("big read for %i bytes into %p, %i left in buffer, buffer size %i\n", (int)count, p, (int)left, (int)reader->size); if (count <= left) { mpack_assert(0, "big read requested for %i bytes, but there are %i bytes " "left in buffer. call mpack_read_native() instead", (int)count, (int)left); mpack_reader_flag_error(reader, mpack_error_bug); mpack_memset(p, 0, count); return; } // we'll need a fill function to get more data. if there's no // fill function, the buffer should contain an entire MessagePack // object, so we raise mpack_error_invalid instead of mpack_error_io // on truncated data. if (reader->fill == NULL) { mpack_reader_flag_error(reader, mpack_error_invalid); mpack_memset(p, 0, count); return; } if (reader->size == 0) { // somewhat debatable what error should be returned here. when // initializing a reader with an in-memory buffer it's not // necessarily a bug if the data is blank; it might just have // been truncated to zero. for this reason we return the same // error as if the data was truncated. mpack_reader_flag_error(reader, mpack_error_io); mpack_memset(p, 0, count); return; } // flush what's left of the buffer if (left > 0) { mpack_log("flushing %i bytes remaining in buffer\n", (int)left); mpack_memcpy(p, reader->data, left); count -= left; p += left; reader->data += left; } // if the remaining data needed is some small fraction of the // buffer size, we'll try to fill the buffer as much as possible // and copy the needed data out. if (count <= reader->size / MPACK_READER_SMALL_FRACTION_DENOMINATOR) { size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size); if (mpack_reader_error(reader) != mpack_ok) return; mpack_memcpy(p, reader->buffer, count); reader->data = reader->buffer + count; reader->end = reader->buffer + read; // otherwise we read the remaining data directly into the target. } else { mpack_log("reading %i additional bytes\n", (int)count); mpack_fill_range(reader, p, count, count); } } MPACK_NOINLINE static void mpack_skip_bytes_straddle(mpack_reader_t* reader, size_t count) { // we'll need at least a fill function to skip more data. if there's // no fill function, the buffer should contain an entire MessagePack // object, so we raise mpack_error_invalid instead of mpack_error_io // on truncated data. (see mpack_read_native_straddle()) if (reader->fill == NULL) { mpack_log("reader has no fill function!\n"); mpack_reader_flag_error(reader, mpack_error_invalid); return; } // discard whatever's left in the buffer size_t left = (size_t)(reader->end - reader->data); mpack_log("discarding %i bytes still in buffer\n", (int)left); count -= left; reader->data = reader->end; // use the skip function if we've got one, and if we're trying // to skip a lot of data. if we only need to skip some tiny // fraction of the buffer size, it's probably better to just // fill the buffer and skip from it instead of trying to seek. if (reader->skip && count > reader->size / 16) { mpack_log("calling skip function for %i bytes\n", (int)count); reader->skip(reader, count); return; } mpack_reader_skip_using_fill(reader, count); } void mpack_skip_bytes(mpack_reader_t* reader, size_t count) { if (mpack_reader_error(reader) != mpack_ok) return; mpack_log("skip requested for %i bytes\n", (int)count); mpack_reader_track_bytes(reader, count); // check if we have enough in the buffer already size_t left = (size_t)(reader->end - reader->data); if (left >= count) { mpack_log("skipping %i bytes still in buffer\n", (int)count); reader->data += count; return; } mpack_skip_bytes_straddle(reader, count); } MPACK_NOINLINE static void mpack_reader_skip_using_fill(mpack_reader_t* reader, size_t count) { mpack_assert(reader->fill != NULL, "missing fill function!"); mpack_assert(reader->data == reader->end, "there are bytes left in the buffer!"); mpack_assert(reader->error == mpack_ok, "should not have called this in an error state (%i)", reader->error); mpack_log("skip using fill for %i bytes\n", (int)count); // fill and discard multiples of the buffer size while (count > reader->size) { mpack_log("filling and discarding buffer of %i bytes\n", (int)reader->size); if (mpack_fill_range(reader, reader->buffer, reader->size, reader->size) < reader->size) { mpack_reader_flag_error(reader, mpack_error_io); return; } count -= reader->size; } // fill the buffer as much as possible reader->data = reader->buffer; size_t read = mpack_fill_range(reader, reader->buffer, count, reader->size); if (read < count) { mpack_reader_flag_error(reader, mpack_error_io); return; } reader->end = reader->data + read; mpack_log("filled %i bytes into buffer; discarding %i bytes\n", (int)read, (int)count); reader->data += count; } void mpack_read_bytes(mpack_reader_t* reader, char* p, size_t count) { mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)count); mpack_reader_track_bytes(reader, count); mpack_read_native(reader, p, count); } void mpack_read_utf8(mpack_reader_t* reader, char* p, size_t byte_count) { mpack_assert(p != NULL, "destination for read of %i bytes is NULL", (int)byte_count); mpack_reader_track_str_bytes_all(reader, byte_count); mpack_read_native(reader, p, byte_count); if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(p, byte_count)) mpack_reader_flag_error(reader, mpack_error_type); } static void mpack_read_cstr_unchecked(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { mpack_assert(buf != NULL, "destination for read of %i bytes is NULL", (int)byte_count); mpack_assert(buffer_size >= 1, "buffer size is zero; you must have room for at least a null-terminator"); if (mpack_reader_error(reader)) { buf[0] = 0; return; } if (byte_count > buffer_size - 1) { mpack_reader_flag_error(reader, mpack_error_too_big); buf[0] = 0; return; } mpack_reader_track_str_bytes_all(reader, byte_count); mpack_read_native(reader, buf, byte_count); buf[byte_count] = 0; } void mpack_read_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count); // check for null bytes if (mpack_reader_error(reader) == mpack_ok && !mpack_str_check_no_null(buf, byte_count)) { buf[0] = 0; mpack_reader_flag_error(reader, mpack_error_type); } } void mpack_read_utf8_cstr(mpack_reader_t* reader, char* buf, size_t buffer_size, size_t byte_count) { mpack_read_cstr_unchecked(reader, buf, buffer_size, byte_count); // check encoding if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check_no_null(buf, byte_count)) { buf[0] = 0; mpack_reader_flag_error(reader, mpack_error_type); } } #ifdef MPACK_MALLOC // Reads native bytes with error callback disabled. This allows MPack reader functions // to hold an allocated buffer and read native data into it without leaking it in // case of a non-local jump (longjmp, throw) out of an error handler. static void mpack_read_native_noerrorfn(mpack_reader_t* reader, char* p, size_t count) { mpack_assert(reader->error == mpack_ok, "cannot call if an error is already flagged!"); mpack_reader_error_t error_fn = reader->error_fn; reader->error_fn = NULL; mpack_read_native(reader, p, count); reader->error_fn = error_fn; } char* mpack_read_bytes_alloc_impl(mpack_reader_t* reader, size_t count, bool null_terminated) { // track the bytes first in case it jumps mpack_reader_track_bytes(reader, count); if (mpack_reader_error(reader) != mpack_ok) return NULL; // cannot allocate zero bytes. this is not an error. if (count == 0 && null_terminated == false) return NULL; // allocate data char* data = (char*)MPACK_MALLOC(count + (null_terminated ? 1 : 0)); // TODO: can this overflow? if (data == NULL) { mpack_reader_flag_error(reader, mpack_error_memory); return NULL; } // read with error callback disabled so we don't leak our buffer mpack_read_native_noerrorfn(reader, data, count); // report flagged errors if (mpack_reader_error(reader) != mpack_ok) { MPACK_FREE(data); if (reader->error_fn) reader->error_fn(reader, mpack_reader_error(reader)); return NULL; } if (null_terminated) data[count] = '\0'; return data; } #endif // read inplace without tracking (since there are different // tracking modes for different inplace readers) static const char* mpack_read_bytes_inplace_notrack(mpack_reader_t* reader, size_t count) { if (mpack_reader_error(reader) != mpack_ok) return NULL; // if we have enough bytes already in the buffer, we can return it directly. if ((size_t)(reader->end - reader->data) >= count) { const char* bytes = reader->data; reader->data += count; return bytes; } if (!mpack_reader_ensure(reader, count)) return NULL; const char* bytes = reader->data; reader->data += count; return bytes; } const char* mpack_read_bytes_inplace(mpack_reader_t* reader, size_t count) { mpack_reader_track_bytes(reader, count); return mpack_read_bytes_inplace_notrack(reader, count); } const char* mpack_read_utf8_inplace(mpack_reader_t* reader, size_t count) { mpack_reader_track_str_bytes_all(reader, count); const char* str = mpack_read_bytes_inplace_notrack(reader, count); if (mpack_reader_error(reader) == mpack_ok && !mpack_utf8_check(str, count)) { mpack_reader_flag_error(reader, mpack_error_type); return NULL; } return str; } static size_t mpack_parse_tag(mpack_reader_t* reader, mpack_tag_t* tag) { mpack_assert(reader->error == mpack_ok, "reader cannot be in an error state!"); if (!mpack_reader_ensure(reader, 1)) return 0; uint8_t type = mpack_load_u8(reader->data); // unfortunately, by far the fastest way to parse a tag is to switch // on the first byte, and to explicitly list every possible byte. so for // infix types, the list of cases is quite large. // // in size-optimized builds, we switch on the top four bits first to // handle most infix types with a smaller jump table to save space. #if MPACK_OPTIMIZE_FOR_SIZE switch (type >> 4) { // positive fixnum case 0x0: case 0x1: case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: *tag = mpack_tag_make_uint(type); return 1; // negative fixnum case 0xe: case 0xf: *tag = mpack_tag_make_int((int8_t)type); return 1; // fixmap case 0x8: *tag = mpack_tag_make_map(type & ~0xf0u); return 1; // fixarray case 0x9: *tag = mpack_tag_make_array(type & ~0xf0u); return 1; // fixstr case 0xa: case 0xb: *tag = mpack_tag_make_str(type & ~0xe0u); return 1; // not one of the common infix types default: break; } #endif // handle individual type tags switch (type) { #if !MPACK_OPTIMIZE_FOR_SIZE // positive fixnum case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: *tag = mpack_tag_make_uint(type); return 1; // negative fixnum case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7: case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff: *tag = mpack_tag_make_int((int8_t)type); return 1; // fixmap case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: *tag = mpack_tag_make_map(type & ~0xf0u); return 1; // fixarray case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: *tag = mpack_tag_make_array(type & ~0xf0u); return 1; // fixstr case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7: case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf: case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7: case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: *tag = mpack_tag_make_str(type & ~0xe0u); return 1; #endif // nil case 0xc0: *tag = mpack_tag_make_nil(); return 1; // bool case 0xc2: case 0xc3: *tag = mpack_tag_make_bool((bool)(type & 1)); return 1; // bin8 case 0xc4: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN8)) return 0; *tag = mpack_tag_make_bin(mpack_load_u8(reader->data + 1)); return MPACK_TAG_SIZE_BIN8; // bin16 case 0xc5: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN16)) return 0; *tag = mpack_tag_make_bin(mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_BIN16; // bin32 case 0xc6: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_BIN32)) return 0; *tag = mpack_tag_make_bin(mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_BIN32; #if MPACK_EXTENSIONS // ext8 case 0xc7: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT8)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 2), mpack_load_u8(reader->data + 1)); return MPACK_TAG_SIZE_EXT8; // ext16 case 0xc8: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT16)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 3), mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_EXT16; // ext32 case 0xc9: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_EXT32)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 5), mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_EXT32; #endif // float case 0xca: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FLOAT)) return 0; *tag = mpack_tag_make_float(mpack_load_float(reader->data + 1)); return MPACK_TAG_SIZE_FLOAT; // double case 0xcb: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_DOUBLE)) return 0; *tag = mpack_tag_make_double(mpack_load_double(reader->data + 1)); return MPACK_TAG_SIZE_DOUBLE; // uint8 case 0xcc: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U8)) return 0; *tag = mpack_tag_make_uint(mpack_load_u8(reader->data + 1)); return MPACK_TAG_SIZE_U8; // uint16 case 0xcd: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U16)) return 0; *tag = mpack_tag_make_uint(mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_U16; // uint32 case 0xce: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U32)) return 0; *tag = mpack_tag_make_uint(mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_U32; // uint64 case 0xcf: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_U64)) return 0; *tag = mpack_tag_make_uint(mpack_load_u64(reader->data + 1)); return MPACK_TAG_SIZE_U64; // int8 case 0xd0: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I8)) return 0; *tag = mpack_tag_make_int(mpack_load_i8(reader->data + 1)); return MPACK_TAG_SIZE_I8; // int16 case 0xd1: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I16)) return 0; *tag = mpack_tag_make_int(mpack_load_i16(reader->data + 1)); return MPACK_TAG_SIZE_I16; // int32 case 0xd2: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I32)) return 0; *tag = mpack_tag_make_int(mpack_load_i32(reader->data + 1)); return MPACK_TAG_SIZE_I32; // int64 case 0xd3: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_I64)) return 0; *tag = mpack_tag_make_int(mpack_load_i64(reader->data + 1)); return MPACK_TAG_SIZE_I64; #if MPACK_EXTENSIONS // fixext1 case 0xd4: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT1)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 1); return MPACK_TAG_SIZE_FIXEXT1; // fixext2 case 0xd5: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT2)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 2); return MPACK_TAG_SIZE_FIXEXT2; // fixext4 case 0xd6: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT4)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 4); return 2; // fixext8 case 0xd7: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT8)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 8); return MPACK_TAG_SIZE_FIXEXT8; // fixext16 case 0xd8: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_FIXEXT16)) return 0; *tag = mpack_tag_make_ext(mpack_load_i8(reader->data + 1), 16); return MPACK_TAG_SIZE_FIXEXT16; #endif // str8 case 0xd9: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR8)) return 0; *tag = mpack_tag_make_str(mpack_load_u8(reader->data + 1)); return MPACK_TAG_SIZE_STR8; // str16 case 0xda: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR16)) return 0; *tag = mpack_tag_make_str(mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_STR16; // str32 case 0xdb: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_STR32)) return 0; *tag = mpack_tag_make_str(mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_STR32; // array16 case 0xdc: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY16)) return 0; *tag = mpack_tag_make_array(mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_ARRAY16; // array32 case 0xdd: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_ARRAY32)) return 0; *tag = mpack_tag_make_array(mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_ARRAY32; // map16 case 0xde: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP16)) return 0; *tag = mpack_tag_make_map(mpack_load_u16(reader->data + 1)); return MPACK_TAG_SIZE_MAP16; // map32 case 0xdf: if (!mpack_reader_ensure(reader, MPACK_TAG_SIZE_MAP32)) return 0; *tag = mpack_tag_make_map(mpack_load_u32(reader->data + 1)); return MPACK_TAG_SIZE_MAP32; // reserved case 0xc1: mpack_reader_flag_error(reader, mpack_error_invalid); return 0; #if !MPACK_EXTENSIONS // ext case 0xc7: // fallthrough case 0xc8: // fallthrough case 0xc9: // fallthrough // fixext case 0xd4: // fallthrough case 0xd5: // fallthrough case 0xd6: // fallthrough case 0xd7: // fallthrough case 0xd8: mpack_reader_flag_error(reader, mpack_error_unsupported); return 0; #endif #if MPACK_OPTIMIZE_FOR_SIZE // any other bytes should have been handled by the infix switch default: break; #endif } mpack_assert(0, "unreachable"); return 0; } mpack_tag_t mpack_read_tag(mpack_reader_t* reader) { mpack_log("reading tag\n"); // make sure we can read a tag if (mpack_reader_error(reader) != mpack_ok) return mpack_tag_nil(); if (mpack_reader_track_element(reader) != mpack_ok) return mpack_tag_nil(); mpack_tag_t tag = MPACK_TAG_ZERO; size_t count = mpack_parse_tag(reader, &tag); if (count == 0) return mpack_tag_nil(); #if MPACK_READ_TRACKING mpack_error_t track_error = mpack_ok; switch (tag.type) { case mpack_type_map: case mpack_type_array: track_error = mpack_track_push(&reader->track, tag.type, tag.v.n); break; #if MPACK_EXTENSIONS case mpack_type_ext: #endif case mpack_type_str: case mpack_type_bin: track_error = mpack_track_push(&reader->track, tag.type, tag.v.l); break; default: break; } if (track_error != mpack_ok) { mpack_reader_flag_error(reader, track_error); return mpack_tag_nil(); } #endif reader->data += count; return tag; } mpack_tag_t mpack_peek_tag(mpack_reader_t* reader) { mpack_log("peeking tag\n"); // make sure we can peek a tag if (mpack_reader_error(reader) != mpack_ok) return mpack_tag_nil(); if (mpack_reader_track_peek_element(reader) != mpack_ok) return mpack_tag_nil(); mpack_tag_t tag = MPACK_TAG_ZERO; if (mpack_parse_tag(reader, &tag) == 0) return mpack_tag_nil(); return tag; } void mpack_discard(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (mpack_reader_error(reader)) return; switch (var.type) { case mpack_type_str: mpack_skip_bytes(reader, var.v.l); mpack_done_str(reader); break; case mpack_type_bin: mpack_skip_bytes(reader, var.v.l); mpack_done_bin(reader); break; #if MPACK_EXTENSIONS case mpack_type_ext: mpack_skip_bytes(reader, var.v.l); mpack_done_ext(reader); break; #endif case mpack_type_array: { for (; var.v.n > 0; --var.v.n) { mpack_discard(reader); if (mpack_reader_error(reader)) break; } mpack_done_array(reader); break; } case mpack_type_map: { for (; var.v.n > 0; --var.v.n) { mpack_discard(reader); mpack_discard(reader); if (mpack_reader_error(reader)) break; } mpack_done_map(reader); break; } default: break; } } #if MPACK_EXTENSIONS mpack_timestamp_t mpack_read_timestamp(mpack_reader_t* reader, size_t size) { mpack_timestamp_t timestamp = {0, 0}; if (size != 4 && size != 8 && size != 12) { mpack_reader_flag_error(reader, mpack_error_invalid); return timestamp; } char buf[12]; mpack_read_bytes(reader, buf, size); mpack_done_ext(reader); if (mpack_reader_error(reader) != mpack_ok) return timestamp; switch (size) { case 4: timestamp.seconds = (int64_t)(uint64_t)mpack_load_u32(buf); break; case 8: { uint64_t packed = mpack_load_u64(buf); timestamp.seconds = (int64_t)(packed & ((UINT64_C(1) << 34) - 1)); timestamp.nanoseconds = (uint32_t)(packed >> 34); break; } case 12: timestamp.nanoseconds = mpack_load_u32(buf); timestamp.seconds = mpack_load_i64(buf + 4); break; default: mpack_assert(false, "unreachable"); break; } if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { mpack_reader_flag_error(reader, mpack_error_invalid); mpack_timestamp_t zero = {0, 0}; return zero; } return timestamp; } #endif #if MPACK_READ_TRACKING void mpack_done_type(mpack_reader_t* reader, mpack_type_t type) { if (mpack_reader_error(reader) == mpack_ok) mpack_reader_flag_if_error(reader, mpack_track_pop(&reader->track, type)); } #endif #if MPACK_DEBUG && MPACK_STDIO static size_t mpack_print_read_prefix(mpack_reader_t* reader, size_t length, char* buffer, size_t buffer_size) { if (length == 0) return 0; size_t read = (length < buffer_size) ? length : buffer_size; mpack_read_bytes(reader, buffer, read); if (mpack_reader_error(reader) != mpack_ok) return 0; mpack_skip_bytes(reader, length - read); return read; } static void mpack_print_element(mpack_reader_t* reader, mpack_print_t* print, size_t depth) { mpack_tag_t val = mpack_read_tag(reader); if (mpack_reader_error(reader) != mpack_ok) return; // We read some bytes from bin and ext so we can print its prefix in hex. char buffer[MPACK_PRINT_BYTE_COUNT]; size_t count = 0; switch (val.type) { case mpack_type_str: mpack_print_append_cstr(print, "\""); for (size_t i = 0; i < val.v.l; ++i) { char c; mpack_read_bytes(reader, &c, 1); if (mpack_reader_error(reader) != mpack_ok) return; switch (c) { case '\n': mpack_print_append_cstr(print, "\\n"); break; case '\\': mpack_print_append_cstr(print, "\\\\"); break; case '"': mpack_print_append_cstr(print, "\\\""); break; default: mpack_print_append(print, &c, 1); break; } } mpack_print_append_cstr(print, "\""); mpack_done_str(reader); return; case mpack_type_array: mpack_print_append_cstr(print, "[\n"); for (size_t i = 0; i < val.v.n; ++i) { for (size_t j = 0; j < depth + 1; ++j) mpack_print_append_cstr(print, " "); mpack_print_element(reader, print, depth + 1); if (mpack_reader_error(reader) != mpack_ok) return; if (i != val.v.n - 1) mpack_print_append_cstr(print, ","); mpack_print_append_cstr(print, "\n"); } for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(print, " "); mpack_print_append_cstr(print, "]"); mpack_done_array(reader); return; case mpack_type_map: mpack_print_append_cstr(print, "{\n"); for (size_t i = 0; i < val.v.n; ++i) { for (size_t j = 0; j < depth + 1; ++j) mpack_print_append_cstr(print, " "); mpack_print_element(reader, print, depth + 1); if (mpack_reader_error(reader) != mpack_ok) return; mpack_print_append_cstr(print, ": "); mpack_print_element(reader, print, depth + 1); if (mpack_reader_error(reader) != mpack_ok) return; if (i != val.v.n - 1) mpack_print_append_cstr(print, ","); mpack_print_append_cstr(print, "\n"); } for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(print, " "); mpack_print_append_cstr(print, "}"); mpack_done_map(reader); return; // The above cases return so as not to print a pseudo-json value. The // below cases break and print pseudo-json. case mpack_type_bin: count = mpack_print_read_prefix(reader, mpack_tag_bin_length(&val), buffer, sizeof(buffer)); mpack_done_bin(reader); break; #if MPACK_EXTENSIONS case mpack_type_ext: count = mpack_print_read_prefix(reader, mpack_tag_ext_length(&val), buffer, sizeof(buffer)); mpack_done_ext(reader); break; #endif default: break; } char buf[256]; mpack_tag_debug_pseudo_json(val, buf, sizeof(buf), buffer, count); mpack_print_append_cstr(print, buf); } static void mpack_print_and_destroy(mpack_reader_t* reader, mpack_print_t* print, size_t depth) { for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(print, " "); mpack_print_element(reader, print, depth); size_t remaining = mpack_reader_remaining(reader, NULL); char buf[256]; if (mpack_reader_destroy(reader) != mpack_ok) { mpack_snprintf(buf, sizeof(buf), "\n<mpack parsing error %s>", mpack_error_to_string(mpack_reader_error(reader))); buf[sizeof(buf) - 1] = '\0'; mpack_print_append_cstr(print, buf); } else if (remaining > 0) { mpack_snprintf(buf, sizeof(buf), "\n<%i extra bytes at end of message>", (int)remaining); buf[sizeof(buf) - 1] = '\0'; mpack_print_append_cstr(print, buf); } } static void mpack_print_data(const char* data, size_t len, mpack_print_t* print, size_t depth) { mpack_reader_t reader; mpack_reader_init_data(&reader, data, len); mpack_print_and_destroy(&reader, print, depth); } void mpack_print_data_to_buffer(const char* data, size_t data_size, char* buffer, size_t buffer_size) { if (buffer_size == 0) { mpack_assert(false, "buffer size is zero!"); return; } mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = buffer_size; mpack_print_data(data, data_size, &print, 0); mpack_print_append(&print, "", 1); // null-terminator mpack_print_flush(&print); // we always make sure there's a null-terminator at the end of the buffer // in case we ran out of space. print.buffer[print.size - 1] = '\0'; } void mpack_print_data_to_callback(const char* data, size_t size, mpack_print_callback_t callback, void* context) { char buffer[1024]; mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = sizeof(buffer); print.callback = callback; print.context = context; mpack_print_data(data, size, &print, 0); mpack_print_flush(&print); } void mpack_print_data_to_file(const char* data, size_t len, FILE* file) { mpack_assert(data != NULL, "data is NULL"); mpack_assert(file != NULL, "file is NULL"); char buffer[1024]; mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = sizeof(buffer); print.callback = &mpack_print_file_callback; print.context = file; mpack_print_data(data, len, &print, 2); mpack_print_append_cstr(&print, "\n"); mpack_print_flush(&print); } void mpack_print_stdfile_to_callback(FILE* file, mpack_print_callback_t callback, void* context) { char buffer[1024]; mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = sizeof(buffer); print.callback = callback; print.context = context; mpack_reader_t reader; mpack_reader_init_stdfile(&reader, file, false); mpack_print_and_destroy(&reader, &print, 0); mpack_print_flush(&print); } #endif #endif /* mpack/mpack-expect.c.c */ #define MPACK_INTERNAL 1 /* #include "mpack-expect.h" */ #if MPACK_EXPECT // Helpers MPACK_STATIC_INLINE uint8_t mpack_expect_native_u8(mpack_reader_t* reader) { if (mpack_reader_error(reader) != mpack_ok) return 0; uint8_t type; if (!mpack_reader_ensure(reader, sizeof(type))) return 0; type = mpack_load_u8(reader->data); reader->data += sizeof(type); return type; } #if !MPACK_OPTIMIZE_FOR_SIZE MPACK_STATIC_INLINE uint16_t mpack_expect_native_u16(mpack_reader_t* reader) { if (mpack_reader_error(reader) != mpack_ok) return 0; uint16_t type; if (!mpack_reader_ensure(reader, sizeof(type))) return 0; type = mpack_load_u16(reader->data); reader->data += sizeof(type); return type; } MPACK_STATIC_INLINE uint32_t mpack_expect_native_u32(mpack_reader_t* reader) { if (mpack_reader_error(reader) != mpack_ok) return 0; uint32_t type; if (!mpack_reader_ensure(reader, sizeof(type))) return 0; type = mpack_load_u32(reader->data); reader->data += sizeof(type); return type; } #endif MPACK_STATIC_INLINE uint8_t mpack_expect_type_byte(mpack_reader_t* reader) { mpack_reader_track_element(reader); return mpack_expect_native_u8(reader); } // Basic Number Functions uint8_t mpack_expect_u8(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= UINT8_MAX) return (uint8_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= 0 && var.v.i <= UINT8_MAX) return (uint8_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } uint16_t mpack_expect_u16(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= UINT16_MAX) return (uint16_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= 0 && var.v.i <= UINT16_MAX) return (uint16_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } uint32_t mpack_expect_u32(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= UINT32_MAX) return (uint32_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= 0 && var.v.i <= UINT32_MAX) return (uint32_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } uint64_t mpack_expect_u64(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { return var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= 0) return (uint64_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } int8_t mpack_expect_i8(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= INT8_MAX) return (int8_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= INT8_MIN && var.v.i <= INT8_MAX) return (int8_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } int16_t mpack_expect_i16(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= INT16_MAX) return (int16_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= INT16_MIN && var.v.i <= INT16_MAX) return (int16_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } int32_t mpack_expect_i32(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= INT32_MAX) return (int32_t)var.v.u; } else if (var.type == mpack_type_int) { if (var.v.i >= INT32_MIN && var.v.i <= INT32_MAX) return (int32_t)var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } int64_t mpack_expect_i64(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) { if (var.v.u <= INT64_MAX) return (int64_t)var.v.u; } else if (var.type == mpack_type_int) { return var.v.i; } mpack_reader_flag_error(reader, mpack_error_type); return 0; } float mpack_expect_float(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) return (float)var.v.u; else if (var.type == mpack_type_int) return (float)var.v.i; else if (var.type == mpack_type_float) return var.v.f; else if (var.type == mpack_type_double) return (float)var.v.d; mpack_reader_flag_error(reader, mpack_error_type); return 0.0f; } double mpack_expect_double(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_uint) return (double)var.v.u; else if (var.type == mpack_type_int) return (double)var.v.i; else if (var.type == mpack_type_float) return (double)var.v.f; else if (var.type == mpack_type_double) return var.v.d; mpack_reader_flag_error(reader, mpack_error_type); return 0.0; } float mpack_expect_float_strict(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_float) return var.v.f; mpack_reader_flag_error(reader, mpack_error_type); return 0.0f; } double mpack_expect_double_strict(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_float) return (double)var.v.f; else if (var.type == mpack_type_double) return var.v.d; mpack_reader_flag_error(reader, mpack_error_type); return 0.0; } // Ranged Number Functions // // All ranged functions are identical other than the type, so we // define their content with a macro. The prototypes are still written // out in full to support ctags/IDE tools. #define MPACK_EXPECT_RANGE_IMPL(name, type_t) \ \ /* make sure the range is sensible */ \ mpack_assert(min_value <= max_value, \ "min_value %i must be less than or equal to max_value %i", \ min_value, max_value); \ \ /* read the value */ \ type_t val = mpack_expect_##name(reader); \ if (mpack_reader_error(reader) != mpack_ok) \ return min_value; \ \ /* make sure it fits */ \ if (val < min_value || val > max_value) { \ mpack_reader_flag_error(reader, mpack_error_type); \ return min_value; \ } \ \ return val; uint8_t mpack_expect_u8_range(mpack_reader_t* reader, uint8_t min_value, uint8_t max_value) {MPACK_EXPECT_RANGE_IMPL(u8, uint8_t)} uint16_t mpack_expect_u16_range(mpack_reader_t* reader, uint16_t min_value, uint16_t max_value) {MPACK_EXPECT_RANGE_IMPL(u16, uint16_t)} uint32_t mpack_expect_u32_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(u32, uint32_t)} uint64_t mpack_expect_u64_range(mpack_reader_t* reader, uint64_t min_value, uint64_t max_value) {MPACK_EXPECT_RANGE_IMPL(u64, uint64_t)} int8_t mpack_expect_i8_range(mpack_reader_t* reader, int8_t min_value, int8_t max_value) {MPACK_EXPECT_RANGE_IMPL(i8, int8_t)} int16_t mpack_expect_i16_range(mpack_reader_t* reader, int16_t min_value, int16_t max_value) {MPACK_EXPECT_RANGE_IMPL(i16, int16_t)} int32_t mpack_expect_i32_range(mpack_reader_t* reader, int32_t min_value, int32_t max_value) {MPACK_EXPECT_RANGE_IMPL(i32, int32_t)} int64_t mpack_expect_i64_range(mpack_reader_t* reader, int64_t min_value, int64_t max_value) {MPACK_EXPECT_RANGE_IMPL(i64, int64_t)} float mpack_expect_float_range(mpack_reader_t* reader, float min_value, float max_value) {MPACK_EXPECT_RANGE_IMPL(float, float)} double mpack_expect_double_range(mpack_reader_t* reader, double min_value, double max_value) {MPACK_EXPECT_RANGE_IMPL(double, double)} uint32_t mpack_expect_map_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(map, uint32_t)} uint32_t mpack_expect_array_range(mpack_reader_t* reader, uint32_t min_value, uint32_t max_value) {MPACK_EXPECT_RANGE_IMPL(array, uint32_t)} // Matching Number Functions void mpack_expect_uint_match(mpack_reader_t* reader, uint64_t value) { if (mpack_expect_u64(reader) != value) mpack_reader_flag_error(reader, mpack_error_type); } void mpack_expect_int_match(mpack_reader_t* reader, int64_t value) { if (mpack_expect_i64(reader) != value) mpack_reader_flag_error(reader, mpack_error_type); } // Other Basic Types void mpack_expect_nil(mpack_reader_t* reader) { if (mpack_expect_type_byte(reader) != 0xc0) mpack_reader_flag_error(reader, mpack_error_type); } bool mpack_expect_bool(mpack_reader_t* reader) { uint8_t type = mpack_expect_type_byte(reader); if ((type & ~1) != 0xc2) mpack_reader_flag_error(reader, mpack_error_type); return (bool)(type & 1); } void mpack_expect_true(mpack_reader_t* reader) { if (mpack_expect_bool(reader) != true) mpack_reader_flag_error(reader, mpack_error_type); } void mpack_expect_false(mpack_reader_t* reader) { if (mpack_expect_bool(reader) != false) mpack_reader_flag_error(reader, mpack_error_type); } #if MPACK_EXTENSIONS mpack_timestamp_t mpack_expect_timestamp(mpack_reader_t* reader) { mpack_timestamp_t zero = {0, 0}; mpack_tag_t tag = mpack_read_tag(reader); if (tag.type != mpack_type_ext) { mpack_reader_flag_error(reader, mpack_error_type); return zero; } if (mpack_tag_ext_exttype(&tag) != MPACK_EXTTYPE_TIMESTAMP) { mpack_reader_flag_error(reader, mpack_error_type); return zero; } return mpack_read_timestamp(reader, mpack_tag_ext_length(&tag)); } int64_t mpack_expect_timestamp_truncate(mpack_reader_t* reader) { return mpack_expect_timestamp(reader).seconds; } #endif // Compound Types uint32_t mpack_expect_map(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_map) return var.v.n; mpack_reader_flag_error(reader, mpack_error_type); return 0; } void mpack_expect_map_match(mpack_reader_t* reader, uint32_t count) { if (mpack_expect_map(reader) != count) mpack_reader_flag_error(reader, mpack_error_type); } bool mpack_expect_map_or_nil(mpack_reader_t* reader, uint32_t* count) { mpack_assert(count != NULL, "count cannot be NULL"); mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_nil) { *count = 0; return false; } if (var.type == mpack_type_map) { *count = var.v.n; return true; } mpack_reader_flag_error(reader, mpack_error_type); *count = 0; return false; } bool mpack_expect_map_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) { mpack_assert(count != NULL, "count cannot be NULL"); bool has_map = mpack_expect_map_or_nil(reader, count); if (has_map && *count > max_count) { *count = 0; mpack_reader_flag_error(reader, mpack_error_type); return false; } return has_map; } uint32_t mpack_expect_array(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_array) return var.v.n; mpack_reader_flag_error(reader, mpack_error_type); return 0; } void mpack_expect_array_match(mpack_reader_t* reader, uint32_t count) { if (mpack_expect_array(reader) != count) mpack_reader_flag_error(reader, mpack_error_type); } bool mpack_expect_array_or_nil(mpack_reader_t* reader, uint32_t* count) { mpack_assert(count != NULL, "count cannot be NULL"); mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_nil) { *count = 0; return false; } if (var.type == mpack_type_array) { *count = var.v.n; return true; } mpack_reader_flag_error(reader, mpack_error_type); *count = 0; return false; } bool mpack_expect_array_max_or_nil(mpack_reader_t* reader, uint32_t max_count, uint32_t* count) { mpack_assert(count != NULL, "count cannot be NULL"); bool has_array = mpack_expect_array_or_nil(reader, count); if (has_array && *count > max_count) { *count = 0; mpack_reader_flag_error(reader, mpack_error_type); return false; } return has_array; } #ifdef MPACK_MALLOC void* mpack_expect_array_alloc_impl(mpack_reader_t* reader, size_t element_size, uint32_t max_count, uint32_t* out_count, bool allow_nil) { mpack_assert(out_count != NULL, "out_count cannot be NULL"); *out_count = 0; uint32_t count; bool has_array = true; if (allow_nil) has_array = mpack_expect_array_max_or_nil(reader, max_count, &count); else count = mpack_expect_array_max(reader, max_count); if (mpack_reader_error(reader)) return NULL; // size 0 is not an error; we return NULL for no elements. if (count == 0) { // we call mpack_done_array() automatically ONLY if we are using // the _or_nil variant. this is the only way to allow nil and empty // to work the same way. if (allow_nil && has_array) mpack_done_array(reader); return NULL; } void* p = MPACK_MALLOC(element_size * count); if (p == NULL) { mpack_reader_flag_error(reader, mpack_error_memory); return NULL; } *out_count = count; return p; } #endif // Str, Bin and Ext Functions uint32_t mpack_expect_str(mpack_reader_t* reader) { #if MPACK_OPTIMIZE_FOR_SIZE mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_str) return var.v.l; mpack_reader_flag_error(reader, mpack_error_type); return 0; #else uint8_t type = mpack_expect_type_byte(reader); uint32_t count; if ((type >> 5) == 5) { count = type & (uint8_t)~0xe0; } else if (type == 0xd9) { count = mpack_expect_native_u8(reader); } else if (type == 0xda) { count = mpack_expect_native_u16(reader); } else if (type == 0xdb) { count = mpack_expect_native_u32(reader); } else { mpack_reader_flag_error(reader, mpack_error_type); return 0; } #if MPACK_READ_TRACKING mpack_reader_flag_if_error(reader, mpack_track_push(&reader->track, mpack_type_str, count)); #endif return count; #endif } size_t mpack_expect_str_buf(mpack_reader_t* reader, char* buf, size_t bufsize) { mpack_assert(buf != NULL, "buf cannot be NULL"); size_t length = mpack_expect_str(reader); if (mpack_reader_error(reader)) return 0; if (length > bufsize) { mpack_reader_flag_error(reader, mpack_error_too_big); return 0; } mpack_read_bytes(reader, buf, length); if (mpack_reader_error(reader)) return 0; mpack_done_str(reader); return length; } size_t mpack_expect_utf8(mpack_reader_t* reader, char* buf, size_t size) { mpack_assert(buf != NULL, "buf cannot be NULL"); size_t length = mpack_expect_str_buf(reader, buf, size); if (!mpack_utf8_check(buf, length)) { mpack_reader_flag_error(reader, mpack_error_type); return 0; } return length; } uint32_t mpack_expect_bin(mpack_reader_t* reader) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_bin) return var.v.l; mpack_reader_flag_error(reader, mpack_error_type); return 0; } size_t mpack_expect_bin_buf(mpack_reader_t* reader, char* buf, size_t bufsize) { mpack_assert(buf != NULL, "buf cannot be NULL"); size_t binsize = mpack_expect_bin(reader); if (mpack_reader_error(reader)) return 0; if (binsize > bufsize) { mpack_reader_flag_error(reader, mpack_error_too_big); return 0; } mpack_read_bytes(reader, buf, binsize); if (mpack_reader_error(reader)) return 0; mpack_done_bin(reader); return binsize; } #if MPACK_EXTENSIONS uint32_t mpack_expect_ext(mpack_reader_t* reader, int8_t* type) { mpack_tag_t var = mpack_read_tag(reader); if (var.type == mpack_type_ext) { *type = mpack_tag_ext_exttype(&var); return mpack_tag_ext_length(&var); } *type = 0; mpack_reader_flag_error(reader, mpack_error_type); return 0; } size_t mpack_expect_ext_buf(mpack_reader_t* reader, int8_t* type, char* buf, size_t bufsize) { mpack_assert(buf != NULL, "buf cannot be NULL"); size_t extsize = mpack_expect_ext(reader, type); if (mpack_reader_error(reader)) return 0; if (extsize > bufsize) { *type = 0; mpack_reader_flag_error(reader, mpack_error_too_big); return 0; } mpack_read_bytes(reader, buf, extsize); if (mpack_reader_error(reader)) { *type = 0; return 0; } mpack_done_ext(reader); return extsize; } #endif void mpack_expect_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) { uint32_t length = mpack_expect_str(reader); mpack_read_cstr(reader, buf, bufsize, length); mpack_done_str(reader); } void mpack_expect_utf8_cstr(mpack_reader_t* reader, char* buf, size_t bufsize) { uint32_t length = mpack_expect_str(reader); mpack_read_utf8_cstr(reader, buf, bufsize, length); mpack_done_str(reader); } #ifdef MPACK_MALLOC static char* mpack_expect_cstr_alloc_unchecked(mpack_reader_t* reader, size_t maxsize, size_t* out_length) { mpack_assert(out_length != NULL, "out_length cannot be NULL"); *out_length = 0; // make sure argument makes sense if (maxsize < 1) { mpack_break("maxsize is zero; you must have room for at least a null-terminator"); mpack_reader_flag_error(reader, mpack_error_bug); return NULL; } if (maxsize > UINT32_MAX) maxsize = UINT32_MAX; size_t length = mpack_expect_str_max(reader, (uint32_t)maxsize - 1); char* str = mpack_read_bytes_alloc_impl(reader, length, true); mpack_done_str(reader); if (str) *out_length = length; return str; } char* mpack_expect_cstr_alloc(mpack_reader_t* reader, size_t maxsize) { size_t length; char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length); if (str && !mpack_str_check_no_null(str, length)) { MPACK_FREE(str); mpack_reader_flag_error(reader, mpack_error_type); return NULL; } return str; } char* mpack_expect_utf8_cstr_alloc(mpack_reader_t* reader, size_t maxsize) { size_t length; char* str = mpack_expect_cstr_alloc_unchecked(reader, maxsize, &length); if (str && !mpack_utf8_check_no_null(str, length)) { MPACK_FREE(str); mpack_reader_flag_error(reader, mpack_error_type); return NULL; } return str; } #endif void mpack_expect_str_match(mpack_reader_t* reader, const char* str, size_t len) { mpack_assert(str != NULL, "str cannot be NULL"); // expect a str the correct length if (len > UINT32_MAX) mpack_reader_flag_error(reader, mpack_error_type); mpack_expect_str_length(reader, (uint32_t)len); if (mpack_reader_error(reader)) return; mpack_reader_track_bytes(reader, len); // check each byte one by one (matched strings are likely to be very small) for (; len > 0; --len) { if (mpack_expect_native_u8(reader) != *str++) { mpack_reader_flag_error(reader, mpack_error_type); return; } } mpack_done_str(reader); } void mpack_expect_tag(mpack_reader_t* reader, mpack_tag_t expected) { mpack_tag_t actual = mpack_read_tag(reader); if (!mpack_tag_equal(actual, expected)) mpack_reader_flag_error(reader, mpack_error_type); } #ifdef MPACK_MALLOC char* mpack_expect_bin_alloc(mpack_reader_t* reader, size_t maxsize, size_t* size) { mpack_assert(size != NULL, "size cannot be NULL"); *size = 0; if (maxsize > UINT32_MAX) maxsize = UINT32_MAX; size_t length = mpack_expect_bin_max(reader, (uint32_t)maxsize); if (mpack_reader_error(reader)) return NULL; char* data = mpack_read_bytes_alloc(reader, length); mpack_done_bin(reader); if (data) *size = length; return data; } #endif #if MPACK_EXTENSIONS && defined(MPACK_MALLOC) char* mpack_expect_ext_alloc(mpack_reader_t* reader, int8_t* type, size_t maxsize, size_t* size) { mpack_assert(size != NULL, "size cannot be NULL"); *size = 0; if (maxsize > UINT32_MAX) maxsize = UINT32_MAX; size_t length = mpack_expect_ext_max(reader, type, (uint32_t)maxsize); if (mpack_reader_error(reader)) return NULL; char* data = mpack_read_bytes_alloc(reader, length); mpack_done_ext(reader); if (data) { *size = length; } else { *type = 0; } return data; } #endif size_t mpack_expect_enum(mpack_reader_t* reader, const char* strings[], size_t count) { // read the string in-place size_t keylen = mpack_expect_str(reader); const char* key = mpack_read_bytes_inplace(reader, keylen); mpack_done_str(reader); if (mpack_reader_error(reader) != mpack_ok) return count; // find what key it matches for (size_t i = 0; i < count; ++i) { const char* other = strings[i]; size_t otherlen = mpack_strlen(other); if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) return i; } // no matches mpack_reader_flag_error(reader, mpack_error_type); return count; } size_t mpack_expect_enum_optional(mpack_reader_t* reader, const char* strings[], size_t count) { if (mpack_reader_error(reader) != mpack_ok) return count; mpack_assert(count != 0, "count cannot be zero; no strings are valid!"); mpack_assert(strings != NULL, "strings cannot be NULL"); // the key is only recognized if it is a string if (mpack_peek_tag(reader).type != mpack_type_str) { mpack_discard(reader); return count; } // read the string in-place size_t keylen = mpack_expect_str(reader); const char* key = mpack_read_bytes_inplace(reader, keylen); mpack_done_str(reader); if (mpack_reader_error(reader) != mpack_ok) return count; // find what key it matches for (size_t i = 0; i < count; ++i) { const char* other = strings[i]; size_t otherlen = mpack_strlen(other); if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) return i; } // no matches return count; } size_t mpack_expect_key_uint(mpack_reader_t* reader, bool found[], size_t count) { if (mpack_reader_error(reader) != mpack_ok) return count; if (count == 0) { mpack_break("count cannot be zero; no keys are valid!"); mpack_reader_flag_error(reader, mpack_error_bug); return count; } mpack_assert(found != NULL, "found cannot be NULL"); // the key is only recognized if it is an unsigned int if (mpack_peek_tag(reader).type != mpack_type_uint) { mpack_discard(reader); return count; } // read the key uint64_t value = mpack_expect_u64(reader); if (mpack_reader_error(reader) != mpack_ok) return count; // unrecognized keys are fine, we just return count if (value >= count) return count; // check if this key is a duplicate if (found[value]) { mpack_reader_flag_error(reader, mpack_error_invalid); return count; } found[value] = true; return (size_t)value; } size_t mpack_expect_key_cstr(mpack_reader_t* reader, const char* keys[], bool found[], size_t count) { size_t i = mpack_expect_enum_optional(reader, keys, count); // unrecognized keys are fine, we just return count if (i == count) return count; // check if this key is a duplicate mpack_assert(found != NULL, "found cannot be NULL"); if (found[i]) { mpack_reader_flag_error(reader, mpack_error_invalid); return count; } found[i] = true; return i; } #endif /* mpack/mpack-node.c.c */ #define MPACK_INTERNAL 1 /* #include "mpack-node.h" */ #if MPACK_NODE MPACK_STATIC_INLINE const char* mpack_node_data_unchecked(mpack_node_t node) { mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!"); mpack_type_t type = node.data->type; MPACK_UNUSED(type); #if MPACK_EXTENSIONS mpack_assert(type == mpack_type_str || type == mpack_type_bin || type == mpack_type_ext, "node of type %i (%s) is not a data type!", type, mpack_type_to_string(type)); #else mpack_assert(type == mpack_type_str || type == mpack_type_bin, "node of type %i (%s) is not a data type!", type, mpack_type_to_string(type)); #endif return node.tree->data + node.data->value.offset; } #if MPACK_EXTENSIONS MPACK_STATIC_INLINE int8_t mpack_node_exttype_unchecked(mpack_node_t node) { mpack_assert(mpack_node_error(node) == mpack_ok, "tree is in an error state!"); mpack_type_t type = node.data->type; MPACK_UNUSED(type); mpack_assert(type == mpack_type_ext, "node of type %i (%s) is not an ext type!", type, mpack_type_to_string(type)); // the exttype of an ext node is stored in the byte preceding the data return mpack_load_i8(mpack_node_data_unchecked(node) - 1); } #endif /* * Tree Parsing */ #ifdef MPACK_MALLOC // fix up the alloc size to make sure it exactly fits the // maximum number of nodes it can contain (the allocator will // waste it back anyway, but we round it down just in case) #define MPACK_NODES_PER_PAGE \ ((MPACK_NODE_PAGE_SIZE - sizeof(mpack_tree_page_t)) / sizeof(mpack_node_data_t) + 1) #define MPACK_PAGE_ALLOC_SIZE \ (sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (MPACK_NODES_PER_PAGE - 1)) #endif #ifdef MPACK_MALLOC /* * Fills the tree until we have at least enough bytes for the current node. */ static bool mpack_tree_reserve_fill(mpack_tree_t* tree) { mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); size_t bytes = tree->parser.current_node_reserved; mpack_assert(bytes > tree->parser.possible_nodes_left, "there are already enough bytes! call mpack_tree_ensure() instead."); mpack_log("filling to reserve %i bytes\n", (int)bytes); // if the necessary bytes would put us over the maximum tree // size, fail right away. // TODO: check for overflow? if (tree->data_length + bytes > tree->max_size) { mpack_tree_flag_error(tree, mpack_error_too_big); return false; } // we'll need a read function to fetch more data. if there's // no read function, the data should contain an entire message // (or messages), so we flag it as invalid. if (tree->read_fn == NULL) { mpack_log("tree has no read function!\n"); mpack_tree_flag_error(tree, mpack_error_invalid); return false; } // expand the buffer if needed if (tree->data_length + bytes > tree->buffer_capacity) { // TODO: check for overflow? size_t new_capacity = (tree->buffer_capacity == 0) ? MPACK_BUFFER_SIZE : tree->buffer_capacity; while (new_capacity < tree->data_length + bytes) new_capacity *= 2; if (new_capacity > tree->max_size) new_capacity = tree->max_size; mpack_log("expanding buffer from %i to %i\n", (int)tree->buffer_capacity, (int)new_capacity); char* new_buffer; if (tree->buffer == NULL) new_buffer = (char*)MPACK_MALLOC(new_capacity); else new_buffer = (char*)mpack_realloc(tree->buffer, tree->data_length, new_capacity); if (new_buffer == NULL) { mpack_tree_flag_error(tree, mpack_error_memory); return false; } tree->data = new_buffer; tree->buffer = new_buffer; tree->buffer_capacity = new_capacity; } // request as much data as possible, looping until we have // all the data we need do { size_t read = tree->read_fn(tree, tree->buffer + tree->data_length, tree->buffer_capacity - tree->data_length); // If the fill function encounters an error, it should flag an error on // the tree. if (mpack_tree_error(tree) != mpack_ok) return false; // We guard against fill functions that return -1 just in case. if (read == (size_t)(-1)) { mpack_tree_flag_error(tree, mpack_error_io); return false; } // If the fill function returns 0, the data is not available yet. We // return false to stop parsing the current node. if (read == 0) { mpack_log("not enough data.\n"); return false; } mpack_log("read %u more bytes\n", (uint32_t)read); tree->data_length += read; tree->parser.possible_nodes_left += read; } while (tree->parser.possible_nodes_left < bytes); return true; } #endif /* * Ensures there are enough additional bytes in the tree for the current node * (including reserved bytes for the children of this node, and in addition to * the reserved bytes for children of previous compound nodes), reading more * data if needed. * * extra_bytes is the number of additional bytes to reserve for the current * node beyond the type byte (since one byte is already reserved for each node * by its parent array or map.) * * This may reallocate the tree, which means the tree->data pointer may change! * * Returns false if not enough bytes could be read. */ MPACK_STATIC_INLINE bool mpack_tree_reserve_bytes(mpack_tree_t* tree, size_t extra_bytes) { mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); // We guard against overflow here. A compound type could declare more than // UINT32_MAX contents which overflows SIZE_MAX on 32-bit platforms. We // flag mpack_error_invalid instead of mpack_error_too_big since it's far // more likely that the message is corrupt than that the data is valid but // not parseable on this architecture (see test_read_node_possible() in // test-node.c .) if ((uint64_t)tree->parser.current_node_reserved + (uint64_t)extra_bytes > SIZE_MAX) { mpack_tree_flag_error(tree, mpack_error_invalid); return false; } tree->parser.current_node_reserved += extra_bytes; // Note that possible_nodes_left already accounts for reserved bytes for // children of previous compound nodes. So even if there are hundreds of // bytes left in the buffer, we might need to read anyway. if (tree->parser.current_node_reserved <= tree->parser.possible_nodes_left) return true; #ifdef MPACK_MALLOC return mpack_tree_reserve_fill(tree); #else return false; #endif } MPACK_STATIC_INLINE size_t mpack_tree_parser_stack_capacity(mpack_tree_t* tree) { #ifdef MPACK_MALLOC return tree->parser.stack_capacity; #else return sizeof(tree->parser.stack) / sizeof(tree->parser.stack[0]); #endif } static bool mpack_tree_push_stack(mpack_tree_t* tree, mpack_node_data_t* first_child, size_t total) { mpack_tree_parser_t* parser = &tree->parser; mpack_assert(parser->state == mpack_tree_parse_state_in_progress); // No need to push empty containers if (total == 0) return true; // Make sure we have enough room in the stack if (parser->level + 1 == mpack_tree_parser_stack_capacity(tree)) { #ifdef MPACK_MALLOC size_t new_capacity = parser->stack_capacity * 2; mpack_log("growing parse stack to capacity %i\n", (int)new_capacity); // Replace the stack-allocated parsing stack if (!parser->stack_owned) { mpack_level_t* new_stack = (mpack_level_t*)MPACK_MALLOC(sizeof(mpack_level_t) * new_capacity); if (!new_stack) { mpack_tree_flag_error(tree, mpack_error_memory); return false; } mpack_memcpy(new_stack, parser->stack, sizeof(mpack_level_t) * parser->stack_capacity); parser->stack = new_stack; parser->stack_owned = true; // Realloc the allocated parsing stack } else { mpack_level_t* new_stack = (mpack_level_t*)mpack_realloc(parser->stack, sizeof(mpack_level_t) * parser->stack_capacity, sizeof(mpack_level_t) * new_capacity); if (!new_stack) { mpack_tree_flag_error(tree, mpack_error_memory); return false; } parser->stack = new_stack; } parser->stack_capacity = new_capacity; #else mpack_tree_flag_error(tree, mpack_error_too_big); return false; #endif } // Push the contents of this node onto the parsing stack ++parser->level; parser->stack[parser->level].child = first_child; parser->stack[parser->level].left = total; return true; } static bool mpack_tree_parse_children(mpack_tree_t* tree, mpack_node_data_t* node) { mpack_tree_parser_t* parser = &tree->parser; mpack_assert(parser->state == mpack_tree_parse_state_in_progress); mpack_type_t type = node->type; size_t total = node->len; // Calculate total elements to read if (type == mpack_type_map) { if ((uint64_t)total * 2 > SIZE_MAX) { mpack_tree_flag_error(tree, mpack_error_too_big); return false; } total *= 2; } // Make sure we are under our total node limit (TODO can this overflow?) tree->node_count += total; if (tree->node_count > tree->max_nodes) { mpack_tree_flag_error(tree, mpack_error_too_big); return false; } // Each node is at least one byte. Count these bytes now to make // sure there is enough data left. if (!mpack_tree_reserve_bytes(tree, total)) return false; // If there are enough nodes left in the current page, no need to grow if (total <= parser->nodes_left) { node->value.children = parser->nodes; parser->nodes += total; parser->nodes_left -= total; } else { #ifdef MPACK_MALLOC // We can't grow if we're using a fixed pool (i.e. we didn't start with a page) if (!tree->next) { mpack_tree_flag_error(tree, mpack_error_too_big); return false; } // Otherwise we need to grow, and the node's children need to be contiguous. // This is a heuristic to decide whether we should waste the remaining space // in the current page and start a new one, or give the children their // own page. With a fraction of 1/8, this causes at most 12% additional // waste. Note that reducing this too much causes less cache coherence and // more malloc() overhead due to smaller allocations, so there's a tradeoff // here. This heuristic could use some improvement, especially with custom // page sizes. mpack_tree_page_t* page; if (total > MPACK_NODES_PER_PAGE || parser->nodes_left > MPACK_NODES_PER_PAGE / 8) { // TODO: this should check for overflow page = (mpack_tree_page_t*)MPACK_MALLOC( sizeof(mpack_tree_page_t) + sizeof(mpack_node_data_t) * (total - 1)); if (page == NULL) { mpack_tree_flag_error(tree, mpack_error_memory); return false; } mpack_log("allocated seperate page %p for %i children, %i left in page of %i total\n", page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE); node->value.children = page->nodes; } else { page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE); if (page == NULL) { mpack_tree_flag_error(tree, mpack_error_memory); return false; } mpack_log("allocated new page %p for %i children, wasting %i in page of %i total\n", page, (int)total, (int)parser->nodes_left, (int)MPACK_NODES_PER_PAGE); node->value.children = page->nodes; parser->nodes = page->nodes + total; parser->nodes_left = MPACK_NODES_PER_PAGE - total; } page->next = tree->next; tree->next = page; #else // We can't grow if we don't have an allocator mpack_tree_flag_error(tree, mpack_error_too_big); return false; #endif } return mpack_tree_push_stack(tree, node->value.children, total); } static bool mpack_tree_parse_bytes(mpack_tree_t* tree, mpack_node_data_t* node) { node->value.offset = tree->size + tree->parser.current_node_reserved + 1; return mpack_tree_reserve_bytes(tree, node->len); } #if MPACK_EXTENSIONS static bool mpack_tree_parse_ext(mpack_tree_t* tree, mpack_node_data_t* node) { // reserve space for exttype tree->parser.current_node_reserved += sizeof(int8_t); node->type = mpack_type_ext; return mpack_tree_parse_bytes(tree, node); } #endif static bool mpack_tree_parse_node_contents(mpack_tree_t* tree, mpack_node_data_t* node) { mpack_assert(tree->parser.state == mpack_tree_parse_state_in_progress); mpack_assert(node != NULL, "null node?"); // read the type. we've already accounted for this byte in // possible_nodes_left, so we already know it is in bounds, and we don't // need to reserve it for this node. mpack_assert(tree->data_length > tree->size); uint8_t type = mpack_load_u8(tree->data + tree->size); mpack_log("node type %x\n", type); tree->parser.current_node_reserved = 0; // as with mpack_read_tag(), the fastest way to parse a node is to switch // on the first byte, and to explicitly list every possible byte. we switch // on the first four bits in size-optimized builds. #if MPACK_OPTIMIZE_FOR_SIZE switch (type >> 4) { // positive fixnum case 0x0: case 0x1: case 0x2: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: node->type = mpack_type_uint; node->value.u = type; return true; // negative fixnum case 0xe: case 0xf: node->type = mpack_type_int; node->value.i = (int8_t)type; return true; // fixmap case 0x8: node->type = mpack_type_map; node->len = (uint32_t)(type & ~0xf0); return mpack_tree_parse_children(tree, node); // fixarray case 0x9: node->type = mpack_type_array; node->len = (uint32_t)(type & ~0xf0); return mpack_tree_parse_children(tree, node); // fixstr case 0xa: case 0xb: node->type = mpack_type_str; node->len = (uint32_t)(type & ~0xe0); return mpack_tree_parse_bytes(tree, node); // not one of the common infix types default: break; } #endif switch (type) { #if !MPACK_OPTIMIZE_FOR_SIZE // positive fixnum case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x2c: case 0x2d: case 0x2e: case 0x2f: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x3e: case 0x3f: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: node->type = mpack_type_uint; node->value.u = type; return true; // negative fixnum case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7: case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff: node->type = mpack_type_int; node->value.i = (int8_t)type; return true; // fixmap case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8a: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x8f: node->type = mpack_type_map; node->len = (uint32_t)(type & ~0xf0); return mpack_tree_parse_children(tree, node); // fixarray case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: node->type = mpack_type_array; node->len = (uint32_t)(type & ~0xf0); return mpack_tree_parse_children(tree, node); // fixstr case 0xa0: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa5: case 0xa6: case 0xa7: case 0xa8: case 0xa9: case 0xaa: case 0xab: case 0xac: case 0xad: case 0xae: case 0xaf: case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb5: case 0xb6: case 0xb7: case 0xb8: case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: node->type = mpack_type_str; node->len = (uint32_t)(type & ~0xe0); return mpack_tree_parse_bytes(tree, node); #endif // nil case 0xc0: node->type = mpack_type_nil; return true; // bool case 0xc2: case 0xc3: node->type = mpack_type_bool; node->value.b = type & 1; return true; // bin8 case 0xc4: node->type = mpack_type_bin; if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) return false; node->len = mpack_load_u8(tree->data + tree->size + 1); return mpack_tree_parse_bytes(tree, node); // bin16 case 0xc5: node->type = mpack_type_bin; if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->len = mpack_load_u16(tree->data + tree->size + 1); return mpack_tree_parse_bytes(tree, node); // bin32 case 0xc6: node->type = mpack_type_bin; if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->len = mpack_load_u32(tree->data + tree->size + 1); return mpack_tree_parse_bytes(tree, node); #if MPACK_EXTENSIONS // ext8 case 0xc7: if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) return false; node->len = mpack_load_u8(tree->data + tree->size + 1); return mpack_tree_parse_ext(tree, node); // ext16 case 0xc8: if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->len = mpack_load_u16(tree->data + tree->size + 1); return mpack_tree_parse_ext(tree, node); // ext32 case 0xc9: if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->len = mpack_load_u32(tree->data + tree->size + 1); return mpack_tree_parse_ext(tree, node); #endif // float case 0xca: if (!mpack_tree_reserve_bytes(tree, sizeof(float))) return false; node->value.f = mpack_load_float(tree->data + tree->size + 1); node->type = mpack_type_float; return true; // double case 0xcb: if (!mpack_tree_reserve_bytes(tree, sizeof(double))) return false; node->value.d = mpack_load_double(tree->data + tree->size + 1); node->type = mpack_type_double; return true; // uint8 case 0xcc: node->type = mpack_type_uint; if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) return false; node->value.u = mpack_load_u8(tree->data + tree->size + 1); return true; // uint16 case 0xcd: node->type = mpack_type_uint; if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->value.u = mpack_load_u16(tree->data + tree->size + 1); return true; // uint32 case 0xce: node->type = mpack_type_uint; if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->value.u = mpack_load_u32(tree->data + tree->size + 1); return true; // uint64 case 0xcf: node->type = mpack_type_uint; if (!mpack_tree_reserve_bytes(tree, sizeof(uint64_t))) return false; node->value.u = mpack_load_u64(tree->data + tree->size + 1); return true; // int8 case 0xd0: node->type = mpack_type_int; if (!mpack_tree_reserve_bytes(tree, sizeof(int8_t))) return false; node->value.i = mpack_load_i8(tree->data + tree->size + 1); return true; // int16 case 0xd1: node->type = mpack_type_int; if (!mpack_tree_reserve_bytes(tree, sizeof(int16_t))) return false; node->value.i = mpack_load_i16(tree->data + tree->size + 1); return true; // int32 case 0xd2: node->type = mpack_type_int; if (!mpack_tree_reserve_bytes(tree, sizeof(int32_t))) return false; node->value.i = mpack_load_i32(tree->data + tree->size + 1); return true; // int64 case 0xd3: node->type = mpack_type_int; if (!mpack_tree_reserve_bytes(tree, sizeof(int64_t))) return false; node->value.i = mpack_load_i64(tree->data + tree->size + 1); return true; #if MPACK_EXTENSIONS // fixext1 case 0xd4: node->len = 1; return mpack_tree_parse_ext(tree, node); // fixext2 case 0xd5: node->len = 2; return mpack_tree_parse_ext(tree, node); // fixext4 case 0xd6: node->len = 4; return mpack_tree_parse_ext(tree, node); // fixext8 case 0xd7: node->len = 8; return mpack_tree_parse_ext(tree, node); // fixext16 case 0xd8: node->len = 16; return mpack_tree_parse_ext(tree, node); #endif // str8 case 0xd9: if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) return false; node->len = mpack_load_u8(tree->data + tree->size + 1); node->type = mpack_type_str; return mpack_tree_parse_bytes(tree, node); // str16 case 0xda: if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->len = mpack_load_u16(tree->data + tree->size + 1); node->type = mpack_type_str; return mpack_tree_parse_bytes(tree, node); // str32 case 0xdb: if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->len = mpack_load_u32(tree->data + tree->size + 1); node->type = mpack_type_str; return mpack_tree_parse_bytes(tree, node); // array16 case 0xdc: if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->len = mpack_load_u16(tree->data + tree->size + 1); node->type = mpack_type_array; return mpack_tree_parse_children(tree, node); // array32 case 0xdd: if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->len = mpack_load_u32(tree->data + tree->size + 1); node->type = mpack_type_array; return mpack_tree_parse_children(tree, node); // map16 case 0xde: if (!mpack_tree_reserve_bytes(tree, sizeof(uint16_t))) return false; node->len = mpack_load_u16(tree->data + tree->size + 1); node->type = mpack_type_map; return mpack_tree_parse_children(tree, node); // map32 case 0xdf: if (!mpack_tree_reserve_bytes(tree, sizeof(uint32_t))) return false; node->len = mpack_load_u32(tree->data + tree->size + 1); node->type = mpack_type_map; return mpack_tree_parse_children(tree, node); // reserved case 0xc1: mpack_tree_flag_error(tree, mpack_error_invalid); return false; #if !MPACK_EXTENSIONS // ext case 0xc7: // fallthrough case 0xc8: // fallthrough case 0xc9: // fallthrough // fixext case 0xd4: // fallthrough case 0xd5: // fallthrough case 0xd6: // fallthrough case 0xd7: // fallthrough case 0xd8: mpack_tree_flag_error(tree, mpack_error_unsupported); return false; #endif #if MPACK_OPTIMIZE_FOR_SIZE // any other bytes should have been handled by the infix switch default: break; #endif } mpack_assert(0, "unreachable"); return false; } static bool mpack_tree_parse_node(mpack_tree_t* tree, mpack_node_data_t* node) { mpack_log("parsing a node at position %i in level %i\n", (int)tree->size, (int)tree->parser.level); if (!mpack_tree_parse_node_contents(tree, node)) { mpack_log("node parsing returned false\n"); return false; } tree->parser.possible_nodes_left -= tree->parser.current_node_reserved; // The reserve for the current node does not include the initial byte // previously reserved as part of its parent. size_t node_size = tree->parser.current_node_reserved + 1; // If the parsed type is a map or array, the reserve includes one byte for // each child. We want to subtract these out of possible_nodes_left, but // not out of the current size of the tree. if (node->type == mpack_type_array) node_size -= node->len; else if (node->type == mpack_type_map) node_size -= node->len * 2; tree->size += node_size; mpack_log("parsed a node of type %s of %i bytes and " "%i additional bytes reserved for children.\n", mpack_type_to_string(node->type), (int)node_size, (int)tree->parser.current_node_reserved + 1 - (int)node_size); return true; } /* * We read nodes in a loop instead of recursively for maximum performance. The * stack holds the amount of children left to read in each level of the tree. * Parsing can pause and resume when more data becomes available. */ static bool mpack_tree_continue_parsing(mpack_tree_t* tree) { if (mpack_tree_error(tree) != mpack_ok) return false; mpack_tree_parser_t* parser = &tree->parser; mpack_assert(parser->state == mpack_tree_parse_state_in_progress); mpack_log("parsing tree elements, %i bytes in buffer\n", (int)tree->data_length); // we loop parsing nodes until the parse stack is empty. we break // by returning out of the function. while (true) { mpack_node_data_t* node = parser->stack[parser->level].child; size_t level = parser->level; if (!mpack_tree_parse_node(tree, node)) return false; --parser->stack[level].left; ++parser->stack[level].child; mpack_assert(mpack_tree_error(tree) == mpack_ok, "mpack_tree_parse_node() should have returned false due to error!"); // pop empty stack levels, exiting the outer loop when the stack is empty. // (we could tail-optimize containers by pre-emptively popping empty // stack levels before reading the new element, this way we wouldn't // have to loop. but we eventually want to use the parse stack to give // better error messages that contain the location of the error, so // it needs to be complete.) while (parser->stack[parser->level].left == 0) { if (parser->level == 0) return true; --parser->level; } } } static void mpack_tree_cleanup(mpack_tree_t* tree) { MPACK_UNUSED(tree); #ifdef MPACK_MALLOC if (tree->parser.stack_owned) { MPACK_FREE(tree->parser.stack); tree->parser.stack = NULL; tree->parser.stack_owned = false; } mpack_tree_page_t* page = tree->next; while (page != NULL) { mpack_tree_page_t* next = page->next; mpack_log("freeing page %p\n", page); MPACK_FREE(page); page = next; } tree->next = NULL; #endif } static bool mpack_tree_parse_start(mpack_tree_t* tree) { if (mpack_tree_error(tree) != mpack_ok) return false; mpack_tree_parser_t* parser = &tree->parser; mpack_assert(parser->state != mpack_tree_parse_state_in_progress, "previous parsing was not finished!"); if (parser->state == mpack_tree_parse_state_parsed) mpack_tree_cleanup(tree); mpack_log("starting parse\n"); tree->parser.state = mpack_tree_parse_state_in_progress; tree->parser.current_node_reserved = 0; // check if we previously parsed a tree if (tree->size > 0) { #ifdef MPACK_MALLOC // if we're buffered, move the remaining data back to the // start of the buffer // TODO: This is not ideal performance-wise. We should only move data // when we need to call the fill function. // TODO: We could consider shrinking the buffer here, especially if we // determine that the fill function is providing less than a quarter of // the buffer size or if messages take up less than a quarter of the // buffer size. Maybe this should be configurable. if (tree->buffer != NULL) { mpack_memmove(tree->buffer, tree->buffer + tree->size, tree->data_length - tree->size); } else #endif // otherwise advance past the parsed data { tree->data += tree->size; } tree->data_length -= tree->size; tree->size = 0; tree->node_count = 0; } // make sure we have at least one byte available before allocating anything parser->possible_nodes_left = tree->data_length; if (!mpack_tree_reserve_bytes(tree, sizeof(uint8_t))) { tree->parser.state = mpack_tree_parse_state_not_started; return false; } mpack_log("parsing tree at %p starting with byte %x\n", tree->data, (uint8_t)tree->data[0]); parser->possible_nodes_left -= 1; tree->node_count = 1; #ifdef MPACK_MALLOC parser->stack = parser->stack_local; parser->stack_owned = false; parser->stack_capacity = sizeof(parser->stack_local) / sizeof(*parser->stack_local); if (tree->pool == NULL) { // allocate first page mpack_tree_page_t* page = (mpack_tree_page_t*)MPACK_MALLOC(MPACK_PAGE_ALLOC_SIZE); mpack_log("allocated initial page %p of size %i count %i\n", page, (int)MPACK_PAGE_ALLOC_SIZE, (int)MPACK_NODES_PER_PAGE); if (page == NULL) { tree->error = mpack_error_memory; return false; } page->next = NULL; tree->next = page; parser->nodes = page->nodes; parser->nodes_left = MPACK_NODES_PER_PAGE; } else #endif { // otherwise use the provided pool mpack_assert(tree->pool != NULL, "no pool provided?"); parser->nodes = tree->pool; parser->nodes_left = tree->pool_count; } tree->root = parser->nodes; ++parser->nodes; --parser->nodes_left; parser->level = 0; parser->stack[0].child = tree->root; parser->stack[0].left = 1; return true; } void mpack_tree_parse(mpack_tree_t* tree) { if (mpack_tree_error(tree) != mpack_ok) return; if (tree->parser.state != mpack_tree_parse_state_in_progress) { if (!mpack_tree_parse_start(tree)) { mpack_tree_flag_error(tree, (tree->read_fn == NULL) ? mpack_error_invalid : mpack_error_io); return; } } if (!mpack_tree_continue_parsing(tree)) { if (mpack_tree_error(tree) != mpack_ok) return; // We're parsing synchronously on a blocking fill function. If we // didn't completely finish parsing the tree, it's an error. mpack_log("tree parsing incomplete. flagging error.\n"); mpack_tree_flag_error(tree, (tree->read_fn == NULL) ? mpack_error_invalid : mpack_error_io); return; } mpack_assert(mpack_tree_error(tree) == mpack_ok); mpack_assert(tree->parser.level == 0); tree->parser.state = mpack_tree_parse_state_parsed; mpack_log("parsed tree of %i bytes, %i bytes left\n", (int)tree->size, (int)tree->parser.possible_nodes_left); mpack_log("%i nodes in final page\n", (int)tree->parser.nodes_left); } bool mpack_tree_try_parse(mpack_tree_t* tree) { if (mpack_tree_error(tree) != mpack_ok) return false; if (tree->parser.state != mpack_tree_parse_state_in_progress) if (!mpack_tree_parse_start(tree)) return false; if (!mpack_tree_continue_parsing(tree)) return false; mpack_assert(mpack_tree_error(tree) == mpack_ok); mpack_assert(tree->parser.level == 0); tree->parser.state = mpack_tree_parse_state_parsed; return true; } /* * Tree functions */ mpack_node_t mpack_tree_root(mpack_tree_t* tree) { if (mpack_tree_error(tree) != mpack_ok) return mpack_tree_nil_node(tree); // We check that a tree was parsed successfully and assert if not. You must // call mpack_tree_parse() (or mpack_tree_try_parse() with a success // result) in order to access the root node. if (tree->parser.state != mpack_tree_parse_state_parsed) { mpack_break("Tree has not been parsed! " "Did you call mpack_tree_parse() or mpack_tree_try_parse()?"); mpack_tree_flag_error(tree, mpack_error_bug); return mpack_tree_nil_node(tree); } return mpack_node(tree, tree->root); } static void mpack_tree_init_clear(mpack_tree_t* tree) { mpack_memset(tree, 0, sizeof(*tree)); tree->nil_node.type = mpack_type_nil; tree->missing_node.type = mpack_type_missing; tree->max_size = SIZE_MAX; tree->max_nodes = SIZE_MAX; } #ifdef MPACK_MALLOC void mpack_tree_init_data(mpack_tree_t* tree, const char* data, size_t length) { mpack_tree_init_clear(tree); MPACK_STATIC_ASSERT(MPACK_NODE_PAGE_SIZE >= sizeof(mpack_tree_page_t), "MPACK_NODE_PAGE_SIZE is too small"); MPACK_STATIC_ASSERT(MPACK_PAGE_ALLOC_SIZE <= MPACK_NODE_PAGE_SIZE, "incorrect page rounding?"); tree->data = data; tree->data_length = length; tree->pool = NULL; tree->pool_count = 0; tree->next = NULL; mpack_log("===========================\n"); mpack_log("initializing tree with data of size %i\n", (int)length); } #endif void mpack_tree_init_pool(mpack_tree_t* tree, const char* data, size_t length, mpack_node_data_t* node_pool, size_t node_pool_count) { mpack_tree_init_clear(tree); #ifdef MPACK_MALLOC tree->next = NULL; #endif if (node_pool_count == 0) { mpack_break("initial page has no nodes!"); mpack_tree_flag_error(tree, mpack_error_bug); return; } tree->data = data; tree->data_length = length; tree->pool = node_pool; tree->pool_count = node_pool_count; mpack_log("===========================\n"); mpack_log("initializing tree with data of size %i and pool of count %i\n", (int)length, (int)node_pool_count); } void mpack_tree_init_error(mpack_tree_t* tree, mpack_error_t error) { mpack_tree_init_clear(tree); tree->error = error; mpack_log("===========================\n"); mpack_log("initializing tree error state %i\n", (int)error); } #ifdef MPACK_MALLOC void mpack_tree_init_stream(mpack_tree_t* tree, mpack_tree_read_t read_fn, void* context, size_t max_message_size, size_t max_message_nodes) { mpack_tree_init_clear(tree); tree->read_fn = read_fn; tree->context = context; mpack_tree_set_limits(tree, max_message_size, max_message_nodes); tree->max_size = max_message_size; tree->max_nodes = max_message_nodes; mpack_log("===========================\n"); mpack_log("initializing tree with stream, max size %i max nodes %i\n", (int)max_message_size, (int)max_message_nodes); } #endif void mpack_tree_set_limits(mpack_tree_t* tree, size_t max_message_size, size_t max_message_nodes) { mpack_assert(max_message_size > 0); mpack_assert(max_message_nodes > 0); tree->max_size = max_message_size; tree->max_nodes = max_message_nodes; } #if MPACK_STDIO typedef struct mpack_file_tree_t { char* data; size_t size; char buffer[MPACK_BUFFER_SIZE]; } mpack_file_tree_t; static void mpack_file_tree_teardown(mpack_tree_t* tree) { mpack_file_tree_t* file_tree = (mpack_file_tree_t*)tree->context; MPACK_FREE(file_tree->data); MPACK_FREE(file_tree); } static bool mpack_file_tree_read(mpack_tree_t* tree, mpack_file_tree_t* file_tree, FILE* file, size_t max_bytes) { // get the file size errno = 0; int error = 0; fseek(file, 0, SEEK_END); error |= errno; long size = ftell(file); error |= errno; fseek(file, 0, SEEK_SET); error |= errno; // check for errors if (error != 0 || size < 0) { mpack_tree_init_error(tree, mpack_error_io); return false; } if (size == 0) { mpack_tree_init_error(tree, mpack_error_invalid); return false; } // make sure the size is less than max_bytes // (this mess exists to safely convert between long and size_t regardless of their widths) if (max_bytes != 0 && (((uint64_t)LONG_MAX > (uint64_t)SIZE_MAX && size > (long)SIZE_MAX) || (size_t)size > max_bytes)) { mpack_tree_init_error(tree, mpack_error_too_big); return false; } // allocate data file_tree->data = (char*)MPACK_MALLOC((size_t)size); if (file_tree->data == NULL) { mpack_tree_init_error(tree, mpack_error_memory); return false; } // read the file long total = 0; while (total < size) { size_t read = fread(file_tree->data + total, 1, (size_t)(size - total), file); if (read <= 0) { mpack_tree_init_error(tree, mpack_error_io); MPACK_FREE(file_tree->data); return false; } total += (long)read; } file_tree->size = (size_t)size; return true; } static bool mpack_tree_file_check_max_bytes(mpack_tree_t* tree, size_t max_bytes) { // the C STDIO family of file functions use long (e.g. ftell) if (max_bytes > LONG_MAX) { mpack_break("max_bytes of %" PRIu64 " is invalid, maximum is LONG_MAX", (uint64_t)max_bytes); mpack_tree_init_error(tree, mpack_error_bug); return false; } return true; } static void mpack_tree_init_stdfile_noclose(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes) { // allocate file tree mpack_file_tree_t* file_tree = (mpack_file_tree_t*) MPACK_MALLOC(sizeof(mpack_file_tree_t)); if (file_tree == NULL) { mpack_tree_init_error(tree, mpack_error_memory); return; } // read all data if (!mpack_file_tree_read(tree, file_tree, stdfile, max_bytes)) { MPACK_FREE(file_tree); return; } mpack_tree_init_data(tree, file_tree->data, file_tree->size); mpack_tree_set_context(tree, file_tree); mpack_tree_set_teardown(tree, mpack_file_tree_teardown); } void mpack_tree_init_stdfile(mpack_tree_t* tree, FILE* stdfile, size_t max_bytes, bool close_when_done) { if (!mpack_tree_file_check_max_bytes(tree, max_bytes)) return; mpack_tree_init_stdfile_noclose(tree, stdfile, max_bytes); if (close_when_done) fclose(stdfile); } void mpack_tree_init_filename(mpack_tree_t* tree, const char* filename, size_t max_bytes) { if (!mpack_tree_file_check_max_bytes(tree, max_bytes)) return; // open the file FILE* file = fopen(filename, "rb"); if (!file) { mpack_tree_init_error(tree, mpack_error_io); return; } mpack_tree_init_stdfile(tree, file, max_bytes, true); } #endif mpack_error_t mpack_tree_destroy(mpack_tree_t* tree) { mpack_tree_cleanup(tree); #ifdef MPACK_MALLOC if (tree->buffer) MPACK_FREE(tree->buffer); #endif if (tree->teardown) tree->teardown(tree); tree->teardown = NULL; return tree->error; } void mpack_tree_flag_error(mpack_tree_t* tree, mpack_error_t error) { if (tree->error == mpack_ok) { mpack_log("tree %p setting error %i: %s\n", tree, (int)error, mpack_error_to_string(error)); tree->error = error; if (tree->error_fn) tree->error_fn(tree, error); } } /* * Node misc functions */ void mpack_node_flag_error(mpack_node_t node, mpack_error_t error) { mpack_tree_flag_error(node.tree, error); } mpack_tag_t mpack_node_tag(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return mpack_tag_nil(); mpack_tag_t tag = MPACK_TAG_ZERO; tag.type = node.data->type; switch (node.data->type) { case mpack_type_missing: // If a node is missing, I don't know if it makes sense to ask for // a tag for it. We'll return a missing tag to match the missing // node I guess, but attempting to use the tag for anything (like // writing it for example) will flag mpack_error_bug. break; case mpack_type_nil: break; case mpack_type_bool: tag.v.b = node.data->value.b; break; case mpack_type_float: tag.v.f = node.data->value.f; break; case mpack_type_double: tag.v.d = node.data->value.d; break; case mpack_type_int: tag.v.i = node.data->value.i; break; case mpack_type_uint: tag.v.u = node.data->value.u; break; case mpack_type_str: tag.v.l = node.data->len; break; case mpack_type_bin: tag.v.l = node.data->len; break; #if MPACK_EXTENSIONS case mpack_type_ext: tag.v.l = node.data->len; tag.exttype = mpack_node_exttype_unchecked(node); break; #endif case mpack_type_array: tag.v.n = node.data->len; break; case mpack_type_map: tag.v.n = node.data->len; break; default: mpack_assert(0, "unrecognized type %i", (int)node.data->type); break; } return tag; } #if MPACK_DEBUG && MPACK_STDIO static void mpack_node_print_element(mpack_node_t node, mpack_print_t* print, size_t depth) { mpack_node_data_t* data = node.data; switch (data->type) { case mpack_type_str: { mpack_print_append_cstr(print, "\""); const char* bytes = mpack_node_data_unchecked(node); for (size_t i = 0; i < data->len; ++i) { char c = bytes[i]; switch (c) { case '\n': mpack_print_append_cstr(print, "\\n"); break; case '\\': mpack_print_append_cstr(print, "\\\\"); break; case '"': mpack_print_append_cstr(print, "\\\""); break; default: mpack_print_append(print, &c, 1); break; } } mpack_print_append_cstr(print, "\""); } break; case mpack_type_array: mpack_print_append_cstr(print, "[\n"); for (size_t i = 0; i < data->len; ++i) { for (size_t j = 0; j < depth + 1; ++j) mpack_print_append_cstr(print, " "); mpack_node_print_element(mpack_node_array_at(node, i), print, depth + 1); if (i != data->len - 1) mpack_print_append_cstr(print, ","); mpack_print_append_cstr(print, "\n"); } for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(print, " "); mpack_print_append_cstr(print, "]"); break; case mpack_type_map: mpack_print_append_cstr(print, "{\n"); for (size_t i = 0; i < data->len; ++i) { for (size_t j = 0; j < depth + 1; ++j) mpack_print_append_cstr(print, " "); mpack_node_print_element(mpack_node_map_key_at(node, i), print, depth + 1); mpack_print_append_cstr(print, ": "); mpack_node_print_element(mpack_node_map_value_at(node, i), print, depth + 1); if (i != data->len - 1) mpack_print_append_cstr(print, ","); mpack_print_append_cstr(print, "\n"); } for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(print, " "); mpack_print_append_cstr(print, "}"); break; default: { const char* prefix = NULL; size_t prefix_length = 0; if (mpack_node_type(node) == mpack_type_bin #if MPACK_EXTENSIONS || mpack_node_type(node) == mpack_type_ext #endif ) { prefix = mpack_node_data(node); prefix_length = mpack_node_data_len(node); } char buf[256]; mpack_tag_t tag = mpack_node_tag(node); mpack_tag_debug_pseudo_json(tag, buf, sizeof(buf), prefix, prefix_length); mpack_print_append_cstr(print, buf); } break; } } void mpack_node_print_to_buffer(mpack_node_t node, char* buffer, size_t buffer_size) { if (buffer_size == 0) { mpack_assert(false, "buffer size is zero!"); return; } mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = buffer_size; mpack_node_print_element(node, &print, 0); mpack_print_append(&print, "", 1); // null-terminator mpack_print_flush(&print); // we always make sure there's a null-terminator at the end of the buffer // in case we ran out of space. print.buffer[print.size - 1] = '\0'; } void mpack_node_print_to_callback(mpack_node_t node, mpack_print_callback_t callback, void* context) { char buffer[1024]; mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = sizeof(buffer); print.callback = callback; print.context = context; mpack_node_print_element(node, &print, 0); mpack_print_flush(&print); } void mpack_node_print_to_file(mpack_node_t node, FILE* file) { mpack_assert(file != NULL, "file is NULL"); char buffer[1024]; mpack_print_t print; mpack_memset(&print, 0, sizeof(print)); print.buffer = buffer; print.size = sizeof(buffer); print.callback = &mpack_print_file_callback; print.context = file; size_t depth = 2; for (size_t i = 0; i < depth; ++i) mpack_print_append_cstr(&print, " "); mpack_node_print_element(node, &print, depth); mpack_print_append_cstr(&print, "\n"); mpack_print_flush(&print); } #endif /* * Node Value Functions */ #if MPACK_EXTENSIONS mpack_timestamp_t mpack_node_timestamp(mpack_node_t node) { mpack_timestamp_t timestamp = {0, 0}; // we'll let mpack_node_exttype() do most checks if (mpack_node_exttype(node) != MPACK_EXTTYPE_TIMESTAMP) { mpack_log("exttype %i\n", mpack_node_exttype(node)); mpack_node_flag_error(node, mpack_error_type); return timestamp; } const char* p = mpack_node_data_unchecked(node); switch (node.data->len) { case 4: timestamp.nanoseconds = 0; timestamp.seconds = mpack_load_u32(p); break; case 8: { uint64_t value = mpack_load_u64(p); timestamp.nanoseconds = (uint32_t)(value >> 34); timestamp.seconds = value & ((UINT64_C(1) << 34) - 1); break; } case 12: timestamp.nanoseconds = mpack_load_u32(p); timestamp.seconds = mpack_load_i64(p + 4); break; default: mpack_tree_flag_error(node.tree, mpack_error_invalid); return timestamp; } if (timestamp.nanoseconds > MPACK_TIMESTAMP_NANOSECONDS_MAX) { mpack_tree_flag_error(node.tree, mpack_error_invalid); mpack_timestamp_t zero = {0, 0}; return zero; } return timestamp; } int64_t mpack_node_timestamp_seconds(mpack_node_t node) { return mpack_node_timestamp(node).seconds; } uint32_t mpack_node_timestamp_nanoseconds(mpack_node_t node) { return mpack_node_timestamp(node).nanoseconds; } #endif /* * Node Data Functions */ void mpack_node_check_utf8(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return; mpack_node_data_t* data = node.data; if (data->type != mpack_type_str || !mpack_utf8_check(mpack_node_data_unchecked(node), data->len)) mpack_node_flag_error(node, mpack_error_type); } void mpack_node_check_utf8_cstr(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return; mpack_node_data_t* data = node.data; if (data->type != mpack_type_str || !mpack_utf8_check_no_null(mpack_node_data_unchecked(node), data->len)) mpack_node_flag_error(node, mpack_error_type); } size_t mpack_node_copy_data(mpack_node_t node, char* buffer, size_t bufsize) { if (mpack_node_error(node) != mpack_ok) return 0; mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize); mpack_type_t type = node.data->type; if (type != mpack_type_str && type != mpack_type_bin #if MPACK_EXTENSIONS && type != mpack_type_ext #endif ) { mpack_node_flag_error(node, mpack_error_type); return 0; } if (node.data->len > bufsize) { mpack_node_flag_error(node, mpack_error_too_big); return 0; } mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); return (size_t)node.data->len; } size_t mpack_node_copy_utf8(mpack_node_t node, char* buffer, size_t bufsize) { if (mpack_node_error(node) != mpack_ok) return 0; mpack_assert(bufsize == 0 || buffer != NULL, "buffer is NULL for maximum of %i bytes", (int)bufsize); mpack_type_t type = node.data->type; if (type != mpack_type_str) { mpack_node_flag_error(node, mpack_error_type); return 0; } if (node.data->len > bufsize) { mpack_node_flag_error(node, mpack_error_too_big); return 0; } if (!mpack_utf8_check(mpack_node_data_unchecked(node), node.data->len)) { mpack_node_flag_error(node, mpack_error_type); return 0; } mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); return (size_t)node.data->len; } void mpack_node_copy_cstr(mpack_node_t node, char* buffer, size_t bufsize) { // we can't break here because the error isn't recoverable; we // have to add a null-terminator. mpack_assert(buffer != NULL, "buffer is NULL"); mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator"); if (mpack_node_error(node) != mpack_ok) { buffer[0] = '\0'; return; } if (node.data->type != mpack_type_str) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_type); return; } if (node.data->len > bufsize - 1) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_too_big); return; } if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_type); return; } mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); buffer[node.data->len] = '\0'; } void mpack_node_copy_utf8_cstr(mpack_node_t node, char* buffer, size_t bufsize) { // we can't break here because the error isn't recoverable; we // have to add a null-terminator. mpack_assert(buffer != NULL, "buffer is NULL"); mpack_assert(bufsize >= 1, "buffer size is zero; you must have room for at least a null-terminator"); if (mpack_node_error(node) != mpack_ok) { buffer[0] = '\0'; return; } if (node.data->type != mpack_type_str) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_type); return; } if (node.data->len > bufsize - 1) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_too_big); return; } if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { buffer[0] = '\0'; mpack_node_flag_error(node, mpack_error_type); return; } mpack_memcpy(buffer, mpack_node_data_unchecked(node), node.data->len); buffer[node.data->len] = '\0'; } #ifdef MPACK_MALLOC char* mpack_node_data_alloc(mpack_node_t node, size_t maxlen) { if (mpack_node_error(node) != mpack_ok) return NULL; // make sure this is a valid data type mpack_type_t type = node.data->type; if (type != mpack_type_str && type != mpack_type_bin #if MPACK_EXTENSIONS && type != mpack_type_ext #endif ) { mpack_node_flag_error(node, mpack_error_type); return NULL; } if (node.data->len > maxlen) { mpack_node_flag_error(node, mpack_error_too_big); return NULL; } char* ret = (char*) MPACK_MALLOC((size_t)node.data->len); if (ret == NULL) { mpack_node_flag_error(node, mpack_error_memory); return NULL; } mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); return ret; } char* mpack_node_cstr_alloc(mpack_node_t node, size_t maxlen) { if (mpack_node_error(node) != mpack_ok) return NULL; // make sure maxlen makes sense if (maxlen < 1) { mpack_break("maxlen is zero; you must have room for at least a null-terminator"); mpack_node_flag_error(node, mpack_error_bug); return NULL; } if (node.data->type != mpack_type_str) { mpack_node_flag_error(node, mpack_error_type); return NULL; } if (node.data->len > maxlen - 1) { mpack_node_flag_error(node, mpack_error_too_big); return NULL; } if (!mpack_str_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { mpack_node_flag_error(node, mpack_error_type); return NULL; } char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1)); if (ret == NULL) { mpack_node_flag_error(node, mpack_error_memory); return NULL; } mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); ret[node.data->len] = '\0'; return ret; } char* mpack_node_utf8_cstr_alloc(mpack_node_t node, size_t maxlen) { if (mpack_node_error(node) != mpack_ok) return NULL; // make sure maxlen makes sense if (maxlen < 1) { mpack_break("maxlen is zero; you must have room for at least a null-terminator"); mpack_node_flag_error(node, mpack_error_bug); return NULL; } if (node.data->type != mpack_type_str) { mpack_node_flag_error(node, mpack_error_type); return NULL; } if (node.data->len > maxlen - 1) { mpack_node_flag_error(node, mpack_error_too_big); return NULL; } if (!mpack_utf8_check_no_null(mpack_node_data_unchecked(node), node.data->len)) { mpack_node_flag_error(node, mpack_error_type); return NULL; } char* ret = (char*) MPACK_MALLOC((size_t)(node.data->len + 1)); if (ret == NULL) { mpack_node_flag_error(node, mpack_error_memory); return NULL; } mpack_memcpy(ret, mpack_node_data_unchecked(node), node.data->len); ret[node.data->len] = '\0'; return ret; } #endif /* * Compound Node Functions */ static mpack_node_data_t* mpack_node_map_int_impl(mpack_node_t node, int64_t num) { if (mpack_node_error(node) != mpack_ok) return NULL; if (node.data->type != mpack_type_map) { mpack_node_flag_error(node, mpack_error_type); return NULL; } mpack_node_data_t* found = NULL; for (size_t i = 0; i < node.data->len; ++i) { mpack_node_data_t* key = mpack_node_child(node, i * 2); if ((key->type == mpack_type_int && key->value.i == num) || (key->type == mpack_type_uint && num >= 0 && key->value.u == (uint64_t)num)) { if (found) { mpack_node_flag_error(node, mpack_error_data); return NULL; } found = mpack_node_child(node, i * 2 + 1); } } if (found) return found; return NULL; } static mpack_node_data_t* mpack_node_map_uint_impl(mpack_node_t node, uint64_t num) { if (mpack_node_error(node) != mpack_ok) return NULL; if (node.data->type != mpack_type_map) { mpack_node_flag_error(node, mpack_error_type); return NULL; } mpack_node_data_t* found = NULL; for (size_t i = 0; i < node.data->len; ++i) { mpack_node_data_t* key = mpack_node_child(node, i * 2); if ((key->type == mpack_type_uint && key->value.u == num) || (key->type == mpack_type_int && key->value.i >= 0 && (uint64_t)key->value.i == num)) { if (found) { mpack_node_flag_error(node, mpack_error_data); return NULL; } found = mpack_node_child(node, i * 2 + 1); } } if (found) return found; return NULL; } static mpack_node_data_t* mpack_node_map_str_impl(mpack_node_t node, const char* str, size_t length) { if (mpack_node_error(node) != mpack_ok) return NULL; mpack_assert(length == 0 || str != NULL, "str of length %i is NULL", (int)length); if (node.data->type != mpack_type_map) { mpack_node_flag_error(node, mpack_error_type); return NULL; } mpack_tree_t* tree = node.tree; mpack_node_data_t* found = NULL; for (size_t i = 0; i < node.data->len; ++i) { mpack_node_data_t* key = mpack_node_child(node, i * 2); if (key->type == mpack_type_str && key->len == length && mpack_memcmp(str, mpack_node_data_unchecked(mpack_node(tree, key)), length) == 0) { if (found) { mpack_node_flag_error(node, mpack_error_data); return NULL; } found = mpack_node_child(node, i * 2 + 1); } } if (found) return found; return NULL; } static mpack_node_t mpack_node_wrap_lookup(mpack_tree_t* tree, mpack_node_data_t* data) { if (!data) { if (tree->error == mpack_ok) mpack_tree_flag_error(tree, mpack_error_data); return mpack_tree_nil_node(tree); } return mpack_node(tree, data); } static mpack_node_t mpack_node_wrap_lookup_optional(mpack_tree_t* tree, mpack_node_data_t* data) { if (!data) { if (tree->error == mpack_ok) return mpack_tree_missing_node(tree); return mpack_tree_nil_node(tree); } return mpack_node(tree, data); } mpack_node_t mpack_node_map_int(mpack_node_t node, int64_t num) { return mpack_node_wrap_lookup(node.tree, mpack_node_map_int_impl(node, num)); } mpack_node_t mpack_node_map_int_optional(mpack_node_t node, int64_t num) { return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_int_impl(node, num)); } mpack_node_t mpack_node_map_uint(mpack_node_t node, uint64_t num) { return mpack_node_wrap_lookup(node.tree, mpack_node_map_uint_impl(node, num)); } mpack_node_t mpack_node_map_uint_optional(mpack_node_t node, uint64_t num) { return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_uint_impl(node, num)); } mpack_node_t mpack_node_map_str(mpack_node_t node, const char* str, size_t length) { return mpack_node_wrap_lookup(node.tree, mpack_node_map_str_impl(node, str, length)); } mpack_node_t mpack_node_map_str_optional(mpack_node_t node, const char* str, size_t length) { return mpack_node_wrap_lookup_optional(node.tree, mpack_node_map_str_impl(node, str, length)); } mpack_node_t mpack_node_map_cstr(mpack_node_t node, const char* cstr) { mpack_assert(cstr != NULL, "cstr is NULL"); return mpack_node_map_str(node, cstr, mpack_strlen(cstr)); } mpack_node_t mpack_node_map_cstr_optional(mpack_node_t node, const char* cstr) { mpack_assert(cstr != NULL, "cstr is NULL"); return mpack_node_map_str_optional(node, cstr, mpack_strlen(cstr)); } bool mpack_node_map_contains_int(mpack_node_t node, int64_t num) { return mpack_node_map_int_impl(node, num) != NULL; } bool mpack_node_map_contains_uint(mpack_node_t node, uint64_t num) { return mpack_node_map_uint_impl(node, num) != NULL; } bool mpack_node_map_contains_str(mpack_node_t node, const char* str, size_t length) { return mpack_node_map_str_impl(node, str, length) != NULL; } bool mpack_node_map_contains_cstr(mpack_node_t node, const char* cstr) { mpack_assert(cstr != NULL, "cstr is NULL"); return mpack_node_map_contains_str(node, cstr, mpack_strlen(cstr)); } size_t mpack_node_enum_optional(mpack_node_t node, const char* strings[], size_t count) { if (mpack_node_error(node) != mpack_ok) return count; // the value is only recognized if it is a string if (mpack_node_type(node) != mpack_type_str) return count; // fetch the string const char* key = mpack_node_str(node); size_t keylen = mpack_node_strlen(node); mpack_assert(mpack_node_error(node) == mpack_ok, "these should not fail"); // find what key it matches for (size_t i = 0; i < count; ++i) { const char* other = strings[i]; size_t otherlen = mpack_strlen(other); if (keylen == otherlen && mpack_memcmp(key, other, keylen) == 0) return i; } // no matches return count; } size_t mpack_node_enum(mpack_node_t node, const char* strings[], size_t count) { size_t value = mpack_node_enum_optional(node, strings, count); if (value == count) mpack_node_flag_error(node, mpack_error_type); return value; } mpack_type_t mpack_node_type(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return mpack_type_nil; return node.data->type; } bool mpack_node_is_nil(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) { // All nodes are treated as nil nodes when we are in error. return true; } return node.data->type == mpack_type_nil; } bool mpack_node_is_missing(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) { // errors still return nil nodes, not missing nodes. return false; } return node.data->type == mpack_type_missing; } void mpack_node_nil(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return; if (node.data->type != mpack_type_nil) mpack_node_flag_error(node, mpack_error_type); } void mpack_node_missing(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return; if (node.data->type != mpack_type_missing) mpack_node_flag_error(node, mpack_error_type); } bool mpack_node_bool(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return false; if (node.data->type == mpack_type_bool) return node.data->value.b; mpack_node_flag_error(node, mpack_error_type); return false; } void mpack_node_true(mpack_node_t node) { if (mpack_node_bool(node) != true) mpack_node_flag_error(node, mpack_error_type); } void mpack_node_false(mpack_node_t node) { if (mpack_node_bool(node) != false) mpack_node_flag_error(node, mpack_error_type); } uint8_t mpack_node_u8(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= UINT8_MAX) return (uint8_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= 0 && node.data->value.i <= UINT8_MAX) return (uint8_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } int8_t mpack_node_i8(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= INT8_MAX) return (int8_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= INT8_MIN && node.data->value.i <= INT8_MAX) return (int8_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } uint16_t mpack_node_u16(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= UINT16_MAX) return (uint16_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= 0 && node.data->value.i <= UINT16_MAX) return (uint16_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } int16_t mpack_node_i16(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= INT16_MAX) return (int16_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= INT16_MIN && node.data->value.i <= INT16_MAX) return (int16_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } uint32_t mpack_node_u32(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= UINT32_MAX) return (uint32_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= 0 && node.data->value.i <= UINT32_MAX) return (uint32_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } int32_t mpack_node_i32(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= INT32_MAX) return (int32_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= INT32_MIN && node.data->value.i <= INT32_MAX) return (int32_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } uint64_t mpack_node_u64(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { return node.data->value.u; } else if (node.data->type == mpack_type_int) { if (node.data->value.i >= 0) return (uint64_t)node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } int64_t mpack_node_i64(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_uint) { if (node.data->value.u <= (uint64_t)INT64_MAX) return (int64_t)node.data->value.u; } else if (node.data->type == mpack_type_int) { return node.data->value.i; } mpack_node_flag_error(node, mpack_error_type); return 0; } unsigned int mpack_node_uint(mpack_node_t node) { // This should be true at compile-time, so this just wraps the 32-bit function. if (sizeof(unsigned int) == 4) return (unsigned int)mpack_node_u32(node); // Otherwise we use u64 and check the range. uint64_t val = mpack_node_u64(node); if (val <= UINT_MAX) return (unsigned int)val; mpack_node_flag_error(node, mpack_error_type); return 0; } int mpack_node_int(mpack_node_t node) { // This should be true at compile-time, so this just wraps the 32-bit function. if (sizeof(int) == 4) return (int)mpack_node_i32(node); // Otherwise we use i64 and check the range. int64_t val = mpack_node_i64(node); if (val >= INT_MIN && val <= INT_MAX) return (int)val; mpack_node_flag_error(node, mpack_error_type); return 0; } float mpack_node_float(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0.0f; if (node.data->type == mpack_type_uint) return (float)node.data->value.u; else if (node.data->type == mpack_type_int) return (float)node.data->value.i; else if (node.data->type == mpack_type_float) return node.data->value.f; else if (node.data->type == mpack_type_double) return (float)node.data->value.d; mpack_node_flag_error(node, mpack_error_type); return 0.0f; } double mpack_node_double(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0.0; if (node.data->type == mpack_type_uint) return (double)node.data->value.u; else if (node.data->type == mpack_type_int) return (double)node.data->value.i; else if (node.data->type == mpack_type_float) return (double)node.data->value.f; else if (node.data->type == mpack_type_double) return node.data->value.d; mpack_node_flag_error(node, mpack_error_type); return 0.0; } float mpack_node_float_strict(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0.0f; if (node.data->type == mpack_type_float) return node.data->value.f; mpack_node_flag_error(node, mpack_error_type); return 0.0f; } double mpack_node_double_strict(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0.0; if (node.data->type == mpack_type_float) return (double)node.data->value.f; else if (node.data->type == mpack_type_double) return node.data->value.d; mpack_node_flag_error(node, mpack_error_type); return 0.0; } #if MPACK_EXTENSIONS int8_t mpack_node_exttype(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_ext) return mpack_node_exttype_unchecked(node); mpack_node_flag_error(node, mpack_error_type); return 0; } #endif uint32_t mpack_node_data_len(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; mpack_type_t type = node.data->type; if (type == mpack_type_str || type == mpack_type_bin #if MPACK_EXTENSIONS || type == mpack_type_ext #endif ) return (uint32_t)node.data->len; mpack_node_flag_error(node, mpack_error_type); return 0; } size_t mpack_node_strlen(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_str) return (size_t)node.data->len; mpack_node_flag_error(node, mpack_error_type); return 0; } const char* mpack_node_str(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return NULL; mpack_type_t type = node.data->type; if (type == mpack_type_str) return mpack_node_data_unchecked(node); mpack_node_flag_error(node, mpack_error_type); return NULL; } const char* mpack_node_data(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return NULL; mpack_type_t type = node.data->type; if (type == mpack_type_str || type == mpack_type_bin #if MPACK_EXTENSIONS || type == mpack_type_ext #endif ) return mpack_node_data_unchecked(node); mpack_node_flag_error(node, mpack_error_type); return NULL; } const char* mpack_node_bin_data(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return NULL; if (node.data->type == mpack_type_bin) return mpack_node_data_unchecked(node); mpack_node_flag_error(node, mpack_error_type); return NULL; } size_t mpack_node_bin_size(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type == mpack_type_bin) return (size_t)node.data->len; mpack_node_flag_error(node, mpack_error_type); return 0; } size_t mpack_node_array_length(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type != mpack_type_array) { mpack_node_flag_error(node, mpack_error_type); return 0; } return (size_t)node.data->len; } mpack_node_t mpack_node_array_at(mpack_node_t node, size_t index) { if (mpack_node_error(node) != mpack_ok) return mpack_tree_nil_node(node.tree); if (node.data->type != mpack_type_array) { mpack_node_flag_error(node, mpack_error_type); return mpack_tree_nil_node(node.tree); } if (index >= node.data->len) { mpack_node_flag_error(node, mpack_error_data); return mpack_tree_nil_node(node.tree); } return mpack_node(node.tree, mpack_node_child(node, index)); } size_t mpack_node_map_count(mpack_node_t node) { if (mpack_node_error(node) != mpack_ok) return 0; if (node.data->type != mpack_type_map) { mpack_node_flag_error(node, mpack_error_type); return 0; } return node.data->len; } // internal node map lookup static mpack_node_t mpack_node_map_at(mpack_node_t node, size_t index, size_t offset) { if (mpack_node_error(node) != mpack_ok) return mpack_tree_nil_node(node.tree); if (node.data->type != mpack_type_map) { mpack_node_flag_error(node, mpack_error_type); return mpack_tree_nil_node(node.tree); } if (index >= node.data->len) { mpack_node_flag_error(node, mpack_error_data); return mpack_tree_nil_node(node.tree); } return mpack_node(node.tree, mpack_node_child(node, index * 2 + offset)); } mpack_node_t mpack_node_map_key_at(mpack_node_t node, size_t index) { return mpack_node_map_at(node, index, 0); } mpack_node_t mpack_node_map_value_at(mpack_node_t node, size_t index) { return mpack_node_map_at(node, index, 1); } #endif