/** * app.c * BS Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include #if ENERGY #include #endif #include #include #define XSTR(x) STR(x) #define STR(x) #x #include "params.h" #include "timer.h" // Define the DPU Binary path as DPU_BINARY here #define DPU_BINARY "./bin/bs_dpu" // Create input arrays void create_test_file(DTYPE * input, DTYPE * querys, uint64_t nr_elements, uint64_t nr_querys) { input[0] = 1; for (uint64_t i = 1; i < nr_elements; i++) { input[i] = input[i - 1] + 1; } for (uint64_t i = 0; i < nr_querys; i++) { querys[i] = i; } } // Compute output in the host int64_t binarySearch(DTYPE * input, DTYPE * querys, DTYPE input_size, uint64_t num_querys) { uint64_t result = -1; DTYPE r; for(uint64_t q = 0; q < num_querys; q++) { DTYPE l = 0; r = input_size; while (l <= r) { DTYPE m = l + (r - l) / 2; // XXX shouldn't this short-circuit? // Check if x is present at mid if (input[m] == querys[q]) result = m; // If x greater, ignore left half if (input[m] < querys[q]) l = m + 1; // If x is smaller, ignore right half else r = m - 1; } } return result; } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; uint64_t input_size = INPUT_SIZE; uint64_t num_querys = p.num_querys; DTYPE result_host = -1; DTYPE result_dpu = -1; // Timer declaration Timer timer; int numa_node_rank = -2; // Allocate DPUs and load binary #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); timer.time[0] = 0; // alloc #endif #if !WITH_LOAD_OVERHEAD DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); timer.time[1] = 0; // load #endif #if !WITH_FREE_OVERHEAD timer.time[6] = 0; // free #endif #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif // Query number adjustement for proper partitioning if(num_querys % (NR_DPUS * NR_TASKLETS)) num_querys = num_querys + (NR_DPUS * NR_TASKLETS - num_querys % (NR_DPUS * NR_TASKLETS)); assert(num_querys % (NR_DPUS * NR_TASKLETS) == 0 && "Input dimension"); // Allocate input and querys vectors DTYPE * input = malloc((input_size) * sizeof(DTYPE)); DTYPE * querys = malloc((num_querys) * sizeof(DTYPE)); // Create an input file with arbitrary data create_test_file(input, querys, input_size, num_querys); // Create kernel arguments uint64_t slice_per_dpu = num_querys / NR_DPUS; dpu_arguments_t input_arguments = {input_size, slice_per_dpu, 0}; for (unsigned int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Perform input transfers uint64_t i = 0; #if WITH_ALLOC_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 0, 0); } DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); if(rep >= p.n_warmup) { stop(&timer, 0); } #endif #if WITH_DPUINFO printf("DPUs:"); DPU_FOREACH (dpu_set, dpu) { int rank = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; int slice = dpu_get_slice_id(dpu_from_set(dpu)); int member = dpu_get_member_id(dpu_from_set(dpu)); printf(" %d(%d.%d)", rank, slice, member); } printf("\n"); #endif #if WITH_LOAD_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 1, 0); } DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); if(rep >= p.n_warmup) { stop(&timer, 1); } DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); #endif // int prev_rank_id = -1; int rank_id = -1; DPU_FOREACH (dpu_set, dpu) { rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) { numa_node_rank = -1; } else { numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu))); } /* if (rank_id != prev_rank_id) { printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank); prev_rank_id = rank_id; } */ } // Compute host solution if(rep >= p.n_warmup) { start(&timer, 2, 0); } result_host = binarySearch(input, querys, input_size - 1, num_querys); if(rep >= p.n_warmup) { stop(&timer, 2); } if (rep >= p.n_warmup) { start(&timer, 3, 0); } DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT)); i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, input)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size * sizeof(DTYPE), DPU_XFER_DEFAULT)); i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, querys + slice_per_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size * sizeof(DTYPE), slice_per_dpu * sizeof(DTYPE), DPU_XFER_DEFAULT)); if (rep >= p.n_warmup) { stop(&timer, 3); } // Run kernel on DPUs if (rep >= p.n_warmup) { start(&timer, 4, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if (rep >= p.n_warmup) { stop(&timer, 4); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } // Print logs if required #if PRINT unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH(dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } #endif // Retrieve results dpu_results_t* results_retrieve[NR_DPUS]; if (rep >= p.n_warmup) { start(&timer, 5, 0); } i = 0; DPU_FOREACH(dpu_set, dpu, i) { results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t)); DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i])); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT)); DPU_FOREACH(dpu_set, dpu, i) { for(unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { if(results_retrieve[i][each_tasklet].found > result_dpu) { result_dpu = results_retrieve[i][each_tasklet].found; } } free(results_retrieve[i]); } if(rep >= p.n_warmup) { stop(&timer, 5); } #if WITH_ALLOC_OVERHEAD #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 6, 0); } #endif DPU_ASSERT(dpu_free(dpu_set)); #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { stop(&timer, 6); } #endif #endif int status = (result_dpu == result_host); if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] results are equal\n"); if (rep >= p.n_warmup) { printf("[::] BS-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%lu", NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(DTYPE), BLOCK_SIZE, input_size); printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d numa_node_rank=%d ", WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD, numa_node_rank); printf("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f", timer.time[0], timer.time[1], timer.time[2], timer.time[3], timer.time[4], timer.time[5], timer.time[6]); printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f", num_querys * sizeof(DTYPE) / timer.time[2], num_querys * sizeof(DTYPE) / (timer.time[4]), num_querys * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f", num_querys * sizeof(DTYPE) / (timer.time[3] + timer.time[4] + timer.time[5]), num_querys * sizeof(DTYPE) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), num_querys * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f", num_querys / timer.time[2], num_querys / (timer.time[4]), num_querys / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n", num_querys / (timer.time[3] + timer.time[4] + timer.time[5]), num_querys / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), num_querys / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] results differ!\n"); } } // Print timing results /* printf("CPU Version Time (ms): "); print(&timer, 0, p.n_reps); printf("CPU-DPU Time (ms): "); print(&timer, 1, p.n_reps); printf("DPU Kernel Time (ms): "); print(&timer, 2, p.n_reps); printf("DPU-CPU Time (ms): "); print(&timer, 3, p.n_reps); */ #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy * num_iterations); #endif free(input); #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_free(dpu_set)); #endif return 0; }