#include #include #include "../../support/timer.h" #ifndef T #define T double #endif #if NUMA #include #include struct bitmask* bitmask_in; struct bitmask* bitmask_out; void* mp_pages[1]; int mp_status[1]; int mp_nodes[1]; int numa_node_in = -1; int numa_node_out = -1; int numa_node_cpu = -1; #endif #if NUMA_MEMCPY struct bitmask* bitmask_cpu; int numa_node_cpu_memcpy = -1; int numa_node_local = -1; int numa_node_in_is_local = 0; #endif #define XSTR(x) STR(x) #define STR(x) #x #include "gemv_utils.h" int main(int argc, char *argv[]) { (void) argc; /* // upstream config: const size_t rows = 20480; const size_t cols = 8192; */ // DPU config: 163840 -n 4096 const size_t rows = 163840; const size_t cols = 4096; T **A, *b, *x; T **A_local, *x_local; #if NUMA bitmask_in = numa_parse_nodestring(argv[1]); bitmask_out = numa_parse_nodestring(argv[2]); numa_node_cpu = atoi(argv[3]); #if NUMA_MEMCPY bitmask_cpu = numa_parse_nodestring(argv[4]); numa_node_cpu_memcpy = atoi(argv[5]); #endif // NUMA_MEMCPY #else (void) argv; #endif // NUMA #if NUMA if (bitmask_out) { numa_set_membind(bitmask_out); numa_free_nodemask(bitmask_out); } b = (T*) numa_alloc(sizeof(T)*rows); #else b = (T*) malloc(sizeof(T)*rows); #endif #if NUMA if (bitmask_in) { numa_set_membind(bitmask_in); // no free yet, re-used in allocate_dense } x = (T*) numa_alloc(sizeof(T)*cols); #else x = (T*) malloc(sizeof(T)*cols); #endif allocate_dense(rows, cols, &A); #if NUMA if (bitmask_in) { numa_free_nodemask(bitmask_in); } #endif make_hilbert_mat(rows,cols, &A); #if NUMA #if NUMA_MEMCPY if (bitmask_cpu) { numa_set_membind(bitmask_cpu); numa_free_nodemask(bitmask_cpu); } #else struct bitmask *bitmask_all = numa_allocate_nodemask(); numa_bitmask_setall(bitmask_all); numa_set_membind(bitmask_all); numa_free_nodemask(bitmask_all); #endif // NUMA_MEMCPY #endif // NUMA A_local = A; x_local = x; #if NUMA mp_pages[0] = A; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A)"); } else if (mp_status[0] < 0) { printf("move_pages(A) error: %d", mp_status[0]); } else { numa_node_in = mp_status[0]; } mp_pages[0] = b; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(b)"); } else if (mp_status[0] < 0) { printf("move_pages(b) error: %d", mp_status[0]); } else { numa_node_out = mp_status[0]; } if (numa_node_cpu != -1) { if (numa_run_on_node(numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } #endif #if NUMA_MEMCPY numa_node_in_is_local = ((numa_node_cpu == numa_node_in) || (numa_node_cpu + 8 == numa_node_in)) * 1; #endif Timer timer; for (int i = 0; i < 20; i++) { #pragma omp parallel { #pragma omp for for (size_t i = 0; i < cols; i++) { x[i] = (T) i+1 ; } #pragma omp for for (size_t i = 0; i < rows; i++) { b[i] = (T) 0; } } #if NUMA_MEMCPY start(&timer, 1, 0); if (!numa_node_in_is_local) { x_local = (T*) numa_alloc(sizeof(T)*cols); allocate_dense(rows, cols, &A_local); } stop(&timer, 1); if (x_local == NULL) { return 1; } if (A_local == NULL) { return 1; } if (!numa_node_in_is_local) { if (numa_node_cpu_memcpy != -1) { if (numa_run_on_node(numa_node_cpu_memcpy) == -1) { perror("numa_run_on_node"); numa_node_cpu_memcpy = -1; } } } start(&timer, 2, 0); if (!numa_node_in_is_local) { //for (size_t i=0; i < rows; i++ ) { // memcpy(A_local[i], A[i], cols * sizeof(T)); //} memcpy(*A_local, *A, rows * cols * sizeof(T)); memcpy(x_local, x, cols * sizeof(T)); } else { A_local = A; x_local = x; } stop(&timer, 2); if (numa_node_cpu != -1) { if (numa_run_on_node(numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } mp_pages[0] = A_local; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A_local)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_local = mp_status[0]; } #endif unsigned int nr_threads = 0; #pragma omp parallel #pragma omp atomic nr_threads++; start(&timer, 0, 0); gemv(A_local, x_local, rows, cols, &b); stop(&timer, 0); #if NUMA_MEMCPY start(&timer, 3, 0); if (!numa_node_in_is_local) { numa_free(x_local, sizeof(T) * cols); numa_free(*A_local, sizeof(T) * rows * cols); numa_free(A_local, sizeof(void*) * rows); } stop(&timer, 3); #endif #if NUMA_MEMCPY printf("[::] GEMV-CPU-MEMCPY | n_threads=%d e_type=%s n_elements=%ld" " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_node_local=%d numa_node_cpu_memcpy=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" " | throughput_MBps=%f throughput_MOpps=%f", nr_threads, XSTR(T), rows * cols, numa_node_in, numa_node_out, numa_node_cpu, numa_node_local, numa_node_cpu_memcpy, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), rows * cols * sizeof(T) / timer.time[0], rows * cols / timer.time[0]); printf(" latency_kernel_us=%f latency_alloc_us=%f latency_memcpy_us=%f latency_free_us=%f latency_total_us=%f\n", timer.time[0], timer.time[1], timer.time[2], timer.time[3], timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3]); #else printf("[::] GEMV-CPU | n_threads=%d e_type=%s n_elements=%ld" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" #endif " | throughput_MBps=%f", nr_threads, XSTR(T), rows * cols, #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), #endif rows * cols * sizeof(T) / timer.time[0]); printf(" throughput_MOpps=%f latency_us=%f\n", rows * cols / timer.time[0], timer.time[0]); #endif } #if 0 print_vec(x, rows); print_mat(A, rows, cols); print_vec(b, rows); #endif #if TYPE_double || TYPE_float printf("sum(x) = %f, sum(Ax) = %f\n", sum_vec(x,cols), sum_vec(b,rows)); #else printf("sum(x) = %d, sum(Ax) = %d\n", sum_vec(x,cols), sum_vec(b,rows)); #endif #if NUMA numa_free(b, sizeof(T)*rows); numa_free(x, sizeof(T)*cols); numa_free(*A, sizeof(T)*rows*cols); numa_free(A, sizeof(void*)*rows); #else free(b); free(x); free(*A); free(A); #endif return 0; } void gemv(T** A, T* x, size_t rows, size_t cols, T** b) { #pragma omp parallel for for (size_t i = 0; i < rows; i ++ ) for (size_t j = 0; j < cols; j ++ ) { (*b)[i] = (*b)[i] + A[i][j]*x[j]; } } void make_hilbert_mat(size_t rows, size_t cols, T*** A) { #pragma omp parallel for for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { #if TYPE_double || TYPE_float (*A)[i][j] = 1.0/( (T) i + (T) j + 1.0); #else (*A)[i][j] = (T)(((i+j)%10)); #endif } } } T sum_vec(T* vec, size_t rows) { T sum = 0; #pragma omp parallel for reduction(+:sum) for (int i = 0; i < rows; i++) sum = sum + vec[i]; return sum; }