#include #include #include "../../support/timer.h" #if NUMA #include #include #ifndef T #define T double #endif struct bitmask* bitmask_in; struct bitmask* bitmask_out; void* mp_pages[1]; int mp_status[1]; int mp_nodes[1]; int numa_node_in = -1; int numa_node_out = -1; int numa_node_cpu = -1; #endif #define XSTR(x) STR(x) #define STR(x) #x #include "gemv_utils.h" int main(int argc, char *argv[]) { (void) argc; /* // upstream config: const size_t rows = 20480; const size_t cols = 8192; */ // DPU config: 163840 -n 4096 const size_t rows = 163840; const size_t cols = 4096; T **A, *b, *x; #if NUMA bitmask_in = numa_parse_nodestring(argv[1]); bitmask_out = numa_parse_nodestring(argv[2]); numa_node_cpu = atoi(argv[3]); #else (void) argv; #endif #if NUMA if (bitmask_out) { numa_set_membind(bitmask_out); numa_free_nodemask(bitmask_out); } b = (T*) numa_alloc(sizeof(T)*rows); #else b = (T*) malloc(sizeof(T)*rows); #endif #if NUMA if (bitmask_in) { numa_set_membind(bitmask_in); // no free yet, re-used in allocate_dense } x = (T*) numa_alloc(sizeof(T)*cols); #else x = (T*) malloc(sizeof(T)*cols); #endif allocate_dense(rows, cols, &A); make_hilbert_mat(rows,cols, &A); #if NUMA struct bitmask *bitmask_all = numa_allocate_nodemask(); numa_bitmask_setall(bitmask_all); numa_set_membind(bitmask_all); numa_free_nodemask(bitmask_all); #endif #if NUMA mp_pages[0] = A; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A)"); } else if (mp_status[0] < 0) { printf("move_pages(A) error: %d", mp_status[0]); } else { numa_node_in = mp_status[0]; } mp_pages[0] = b; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(b)"); } else if (mp_status[0] < 0) { printf("move_pages(b) error: %d", mp_status[0]); } else { numa_node_out = mp_status[0]; } if (numa_node_cpu != -1) { if (numa_run_on_node(numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } #endif Timer timer; for (int i = 0; i < 100; i++) { #pragma omp parallel { #pragma omp for for (size_t i = 0; i < cols; i++) { x[i] = (T) i+1 ; } #pragma omp for for (size_t i = 0; i < rows; i++) { b[i] = (T) 0; } } unsigned int nr_threads = 0; #pragma omp parallel #pragma omp atomic nr_threads++; start(&timer, 0, 0); gemv(A, x, rows, cols, &b); stop(&timer, 0); printf("[::] GEMV-CPU | n_threads=%d e_type=%s n_elements=%ld" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" #endif " | throughput_MBps=%f", nr_threads, XSTR(T), rows * cols, #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), #endif rows * cols * sizeof(T) / timer.time[0]); printf(" throughput_MOpps=%f", rows * cols / timer.time[0]); printall(&timer, 0); } #if 0 print_vec(x, rows); print_mat(A, rows, cols); print_vec(b, rows); #endif #if TYPE_double || TYPE_float printf("sum(x) = %f, sum(Ax) = %f\n", sum_vec(x,cols), sum_vec(b,rows)); #else printf("sum(x) = %d, sum(Ax) = %d\n", sum_vec(x,cols), sum_vec(b,rows)); #endif #if NUMA numa_free(b, sizeof(T)*rows); numa_free(x, sizeof(T)*cols); numa_free(*A, sizeof(T)*rows*cols); numa_free(A, sizeof(void*)*rows); #else free(b); free(x); free(*A); free(A); #endif return 0; } void gemv(T** A, T* x, size_t rows, size_t cols, T** b) { #pragma omp parallel for for (size_t i = 0; i < rows; i ++ ) for (size_t j = 0; j < cols; j ++ ) { (*b)[i] = (*b)[i] + A[i][j]*x[j]; } } void make_hilbert_mat(size_t rows, size_t cols, T*** A) { #pragma omp parallel for for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { #if TYPE_double || TYPE_float (*A)[i][j] = 1.0/( (T) i + (T) j + 1.0); #else (*A)[i][j] = (T)(((i+j)%10)); #endif } } } T sum_vec(T* vec, size_t rows) { T sum = 0; #pragma omp parallel for reduction(+:sum) for (int i = 0; i < rows; i++) sum = sum + vec[i]; return sum; }