#include #include #include #include #define THREAD 128 #define T int __global__ void gemv(int m, int n, T *adim, T *b, T *d_ans); void cgemv(int m, int n, T *adim, T *b, T *d_ans); double gettime() { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec + (double)tv.tv_usec*1.0e-6; } int main(int argc, char **argv) { /* for CPU */ int i, j; int *bdim, *c, *ans, *h_ans; //double start, stop; //double cpu_time, gpu_time; int n = 8192; int m = 20480; bdim = (T*)malloc(sizeof(T) *m*n); c = (T*)malloc(sizeof(T) *n); ans = (T*)malloc(sizeof(T) *m); h_ans = (T*)malloc(sizeof(T) *m); /* for GPU */ T *d_bdim, *d_c, *d_ans; cudaMalloc((void **)&d_bdim, sizeof(T)*m*n); cudaMalloc((void **)&d_c, sizeof(T)*n); cudaMalloc((void **)&d_ans, sizeof(T)*m); for(i = 0; i < n; i++) { c[i] = 1; for(j = 0; j < m; j++) bdim[i*m+j] = 1; } //start = gettime(); cgemv(m, n, bdim, c, ans); //stop = gettime(); //cpu_time=stop - start; // Event creation cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); float time1 = 0; cudaMemcpy(d_bdim, bdim, sizeof(T)*m*n, cudaMemcpyHostToDevice); cudaMemcpy(d_c, c, sizeof(T)*n, cudaMemcpyHostToDevice); // Start timer cudaEventRecord( start, 0 ); //start = gettime(); gemv<<>>(m, n, d_bdim, d_c, d_ans); //stop = gettime(); // End timer cudaEventRecord( stop, 0 ); cudaEventSynchronize( stop ); cudaEventElapsedTime( &time1, start, stop ); //gpu_time=stop - start; cudaMemcpy(h_ans, d_ans, sizeof(T)*m, cudaMemcpyDeviceToHost); //printf("cpu_time : %.6f[sec]\n",cpu_time); //printf("gpu_time : %.6f[sec]\n",gpu_time); //printf("%f x\n", cpu_time / gpu_time); for(i = 0; i < m; i++) printf("%d -- %d\n", ans[i], h_ans[i]); printf("Execution time = %f ms\n", time1); free(bdim); free(c); free(ans); free(h_ans); cudaFree(d_bdim); cudaFree(d_c); cudaFree(d_ans); return 0; } __global__ void gemv(int m, int n, T* adim, T* b, T* d_ans) { int i; int div = n/THREAD; __shared__ T tmp[THREAD]; tmp[threadIdx.x] = 0.0; for(i = 0; i < div; i++) { tmp[threadIdx.x] += adim[blockIdx.x*n+i*THREAD+threadIdx.x] * b[i * THREAD + threadIdx.x]; } if(threadIdx.x < m%THREAD) tmp[threadIdx.x] += adim[blockIdx.x*n+THREAD*div+threadIdx.x] * b[THREAD * div + threadIdx.x]; __syncthreads(); for(i = THREAD / 2; i > 31; i = i / 2) { if(threadIdx.x < i) tmp[threadIdx.x] += tmp[threadIdx.x + i]; __syncthreads(); } if(threadIdx.x < 16) { tmp[threadIdx.x] += tmp[threadIdx.x + 16]; __syncthreads(); tmp[threadIdx.x] += tmp[threadIdx.x + 8]; __syncthreads(); tmp[threadIdx.x] += tmp[threadIdx.x + 4]; __syncthreads(); tmp[threadIdx.x] += tmp[threadIdx.x + 2]; __syncthreads(); tmp[threadIdx.x] += tmp[threadIdx.x + 1]; __syncthreads(); } if(threadIdx.x == 0) d_ans[blockIdx.x] = tmp[0]; } void cgemv(int m, int n, T *adim, T *b, T *d_ans) { int i, j; for(i = 0; i < m; i++) for(j = 0; j < n; j++) d_ans[i] += adim[i*n+j] * b[j]; }