/** * app.c * GEMV Host Application Source File * */ #include #include #include #include #include #include #include #include #include #if ENERGY #include #endif #define XSTR(x) STR(x) #define STR(x) #x #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/gemv_dpu" #endif static T* A; static T* B; static T* C; static T* C_dpu; // Create input arrays static void init_data(T* A, T* B, unsigned int m_size, unsigned int n_size) { srand(0); for (unsigned int i = 0; i < m_size * n_size; i++) { A[i] = (unsigned int) (rand()%50); } for (unsigned int i = 0; i < n_size; i++) { B[i] = (unsigned int) (rand()%50); } } // Compute output in the host static void gemv_host(T* C, T* A, T* B, unsigned int m_size, unsigned int n_size) { for (unsigned int i = 0; i < m_size; i++) { C[i] = 0; } for (unsigned int m = 0; m < m_size; m++) { for (unsigned int n = 0; n < n_size; n++) { C[m] += A[m * n_size + n] * B[n]; } } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; // Timer Timer timer; // Allocate DPUs and load binary #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); timer.time[0] = 0; // alloc #endif #if !WITH_LOAD_OVERHEAD DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); timer.time[1] = 0; // load #endif #if !WITH_FREE_OVERHEAD timer.time[6] = 0; // free #endif #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif unsigned int i; unsigned int m_size = p.m_size; unsigned int n_size = p.n_size; // Initialize help data dpu_info = (struct dpu_info_t *) malloc(NR_DPUS * sizeof(struct dpu_info_t)); dpu_arguments_t *input_args = (dpu_arguments_t *) malloc(NR_DPUS * sizeof(dpu_arguments_t)); uint32_t max_rows_per_dpu = 0; uint32_t n_size_pad = n_size; if(n_size % 2 == 1) { n_size_pad++; } for (i = 0; i < NR_DPUS; i++) { uint32_t rows_per_dpu; uint32_t prev_rows_dpu = 0; uint32_t chunks = m_size / NR_DPUS; rows_per_dpu = chunks; uint32_t rest_rows = m_size % NR_DPUS; if (i < rest_rows) rows_per_dpu++; if (rest_rows > 0) { if (i >= rest_rows) prev_rows_dpu = rest_rows * (chunks + 1) + (i - rest_rows) * chunks; else prev_rows_dpu = i * (chunks + 1); } else { prev_rows_dpu = i * chunks; } // Keep max rows for parallel transfers uint32_t rows_per_dpu_pad = rows_per_dpu; if (rows_per_dpu_pad % 2 == 1) // 4-byte elements rows_per_dpu_pad++; if (rows_per_dpu_pad > max_rows_per_dpu) max_rows_per_dpu = rows_per_dpu_pad; dpu_info[i].rows_per_dpu = rows_per_dpu; dpu_info[i].rows_per_dpu_pad = rows_per_dpu_pad; dpu_info[i].prev_rows_dpu = prev_rows_dpu; // Copy input arguments to DPU input_args[i].n_size = n_size; input_args[i].n_size_pad = n_size_pad; input_args[i].nr_rows = rows_per_dpu; } A = malloc(max_rows_per_dpu * NR_DPUS * n_size_pad * sizeof(T)); B = malloc(n_size_pad * sizeof(T)); C = malloc(max_rows_per_dpu * NR_DPUS * sizeof(T)); C_dpu = malloc(max_rows_per_dpu * NR_DPUS * sizeof(T)); // Initialize data with arbitrary data init_data(A, B, m_size, n_size); // Compute output on CPU (performance comparison and verification purposes) for (unsigned int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { #if WITH_ALLOC_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 0, 0); } DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); if(rep >= p.n_warmup) { stop(&timer, 0); } #endif #if WITH_LOAD_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 1, 0); } DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); if(rep >= p.n_warmup) { stop(&timer, 1); } DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); #endif if(rep >= p.n_warmup) { start(&timer, 2, 0); } gemv_host(C, A, B, m_size, n_size); if(rep >= p.n_warmup) { stop(&timer, 2); } if (rep >= p.n_warmup) { start(&timer, 3, 0); } // Input arguments i = 0; DPU_FOREACH(dpu_set, dpu, i) { // Copy input arguments to DPU input_args[i].max_rows = max_rows_per_dpu; DPU_ASSERT(dpu_prepare_xfer(dpu, input_args + i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(dpu_arguments_t), DPU_XFER_DEFAULT)); // Copy input array and vector i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, A + dpu_info[i].prev_rows_dpu * n_size)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, max_rows_per_dpu * n_size_pad * sizeof(T), DPU_XFER_DEFAULT)); DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, B)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, max_rows_per_dpu * n_size_pad * sizeof(T) , n_size_pad * sizeof(T), DPU_XFER_DEFAULT)); if (rep >= p.n_warmup) { stop(&timer, 3); } // Run kernel on DPUs if (rep >= p.n_warmup) { start(&timer, 4, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if (rep >= p.n_warmup) { stop(&timer, 4); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT // Display DPU Logs DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); } #endif // Retrieve results if (rep >= p.n_warmup) start(&timer, 5, 0); i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, C_dpu + i * max_rows_per_dpu)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, max_rows_per_dpu * n_size_pad * sizeof(T) + n_size_pad * sizeof(T), max_rows_per_dpu * sizeof(T), DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) { stop(&timer, 5); } #if WITH_ALLOC_OVERHEAD #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 6, 0); } #endif DPU_ASSERT(dpu_free(dpu_set)); #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { stop(&timer, 6); } #endif #endif // Check output bool status = true; unsigned int n,j; i = 0; for (n = 0; n < NR_DPUS; n++) { for (j = 0; j < dpu_info[n].rows_per_dpu; j++) { if(C[i] != C_dpu[n * max_rows_per_dpu + j]) { status = false; #if PRINT // printf("%d: %d -- %d\n", i, C[i], C_dpu[n * max_rows_per_dpu + j]); #endif } i++; } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); if (rep >= p.n_warmup) { printf("[::] GEMV UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d", NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(T), BLOCK_SIZE, n_size * m_size); printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d ", WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD); printf("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f", timer.time[0], timer.time[1], timer.time[2], timer.time[3], timer.time[4], timer.time[5], timer.time[6]); printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f", n_size * m_size * sizeof(T) / timer.time[2], n_size * m_size * sizeof(T) / (timer.time[4]), n_size * m_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f", n_size * m_size * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5]), n_size * m_size * sizeof(T) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), n_size * m_size * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f", n_size * m_size / timer.time[2], n_size * m_size / (timer.time[4]), n_size * m_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n", n_size * m_size / (timer.time[3] + timer.time[4] + timer.time[5]), n_size * m_size / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), n_size * m_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } #if ENERGY double acc_energy, avg_energy, acc_time, avg_time; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_ACCUMULATE, &acc_energy)); DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &avg_energy)); DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_ACCUMULATE, &acc_time)); DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_AVERAGE, &avg_time)); #endif // Print timing results /* printf("CPU Version Time (ms): "); print(&timer, 0, 1); printf("CPU-DPU Time (ms): "); print(&timer, 1, p.n_reps); printf("DPU Kernel Time (ms): "); print(&timer, 2, p.n_reps); printf("DPU-CPU Time (ms): "); print(&timer, 3, p.n_reps); */ #if ENERGY printf("Energy (J): %f J\t", avg_energy); #endif // Deallocation free(A); free(B); free(C); free(C_dpu); #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_free(dpu_set)); #endif #if ENERGY DPU_ASSERT(dpu_probe_deinit(&probe)); #endif return 0; }