/** * app.c * HST-S Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #if ENERGY #include #endif // Pointer declaration static T* A; static unsigned int* histo_host; static unsigned int* histo; // Create input arrays static void read_input(T* A, const Params p) { char dctFileName[100]; FILE *File = NULL; // Open input file unsigned short temp; sprintf(dctFileName, p.file_name); if((File = fopen(dctFileName, "rb")) != NULL) { for(unsigned int y = 0; y < p.input_size; y++) { fread(&temp, sizeof(unsigned short), 1, File); A[y] = (unsigned int)ByteSwap16(temp); if(A[y] >= 4096) A[y] = 4095; } fclose(File); } else { printf("%s does not exist\n", dctFileName); exit(1); } } // Compute output in the host static void histogram_host(unsigned int* histo, T* A, unsigned int bins, unsigned int nr_elements, int exp, unsigned int nr_of_dpus) { if(!exp){ for (unsigned int i = 0; i < nr_of_dpus; i++) { for (unsigned int j = 0; j < nr_elements; j++) { T d = A[j]; histo[i * bins + ((d * bins) >> DEPTH)] += 1; } } } else{ for (unsigned int j = 0; j < nr_elements; j++) { T d = A[j]; histo[(d * bins) >> DEPTH] += 1; } } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); printf("Allocated %d DPU(s)\n", nr_of_dpus); unsigned int i = 0; unsigned int input_size; // Size of input image unsigned int dpu_s = p.dpu_s; if(p.exp == 0) input_size = p.input_size * nr_of_dpus; // Size of input image else if(p.exp == 1) input_size = p.input_size; // Size of input image else input_size = p.input_size * dpu_s; // Size of input image const unsigned int input_size_8bytes = ((input_size * sizeof(T)) % 8) != 0 ? roundup(input_size, 8) : input_size; // Input size per DPU (max.), 8-byte aligned const unsigned int input_size_dpu = divceil(input_size, nr_of_dpus); // Input size per DPU (max.) const unsigned int input_size_dpu_8bytes = ((input_size_dpu * sizeof(T)) % 8) != 0 ? roundup(input_size_dpu, 8) : input_size_dpu; // Input size per DPU (max.), 8-byte aligned // Input/output allocation A = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); T *bufferA = A; histo_host = malloc(p.bins * sizeof(unsigned int)); histo = malloc(nr_of_dpus * p.bins * sizeof(unsigned int)); // Create an input file with arbitrary data read_input(A, p); if(p.exp == 0){ for(unsigned int j = 1; j < nr_of_dpus; j++){ memcpy(&A[j * input_size_dpu_8bytes], &A[0], input_size_dpu_8bytes * sizeof(T)); } } else if(p.exp == 2){ for(unsigned int j = 1; j < dpu_s; j++) memcpy(&A[j * p.input_size], &A[0], p.input_size * sizeof(T)); } // Timer declaration Timer timer; printf("NR_TASKLETS\t%d\tBL\t%d\tinput_size\t%u\n", NR_TASKLETS, BL, input_size); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { memset(histo_host, 0, p.bins * sizeof(unsigned int)); memset(histo, 0, nr_of_dpus * p.bins * sizeof(unsigned int)); // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, rep - p.n_warmup); histogram_host(histo_host, A, p.bins, p.input_size, 1, nr_of_dpus); if(rep >= p.n_warmup) stop(&timer, 0); printf("Load input data\n"); if(rep >= p.n_warmup) start(&timer, 1, rep - p.n_warmup); // Input arguments unsigned int kernel = 0; i = 0; dpu_arguments_t input_arguments[NR_DPUS]; for(i=0; i= p.n_warmup) stop(&timer, 1); printf("Run program on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup) { start(&timer, 2, rep - p.n_warmup); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) { stop(&timer, 2); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif printf("Retrieve results\n"); i = 0; if(rep >= p.n_warmup) start(&timer, 3, rep - p.n_warmup); // PARALLEL RETRIEVE TRANSFER DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, histo + p.bins * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu_8bytes * sizeof(T), p.bins * sizeof(unsigned int), DPU_XFER_DEFAULT)); // Final histogram merging for(i = 1; i < nr_of_dpus; i++){ for(unsigned int j = 0; j < p.bins; j++){ histo[j] += histo[j + i * p.bins]; } } if(rep >= p.n_warmup) stop(&timer, 3); } // Print timing results printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU "); print(&timer, 1, p.n_reps); printf("DPU Kernel "); print(&timer, 2, p.n_reps); printf("DPU-CPU "); print(&timer, 3, p.n_reps); #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Check output bool status = true; if(p.exp == 1) for (unsigned int j = 0; j < p.bins; j++) { if(histo_host[j] != histo[j]){ status = false; #if PRINT printf("%u - %u: %u -- %u\n", j, j, histo_host[j], histo[j]); #endif } } else if(p.exp == 2) for (unsigned int j = 0; j < p.bins; j++) { if(dpu_s * histo_host[j] != histo[j]){ status = false; #if PRINT printf("%u - %u: %u -- %u\n", j, j, dpu_s * histo_host[j], histo[j]); #endif } } else for (unsigned int j = 0; j < p.bins; j++) { if(nr_of_dpus * histo_host[j] != histo[j]){ status = false; #if PRINT printf("%u - %u: %u -- %u\n", j, j, nr_of_dpus * histo_host[j], histo[j]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } // Deallocation free(A); free(histo_host); free(histo); DPU_ASSERT(dpu_free(dpu_set)); return status ? 0 : -1; }