/* * Execution of arithmetic operations with multiple tasklets * */ #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/cyclecount.h" __host dpu_arguments_t DPU_INPUT_ARGUMENTS; __host dpu_results_t DPU_RESULTS[NR_TASKLETS]; // Arithmetic operation static void update(T *bufferA, T scalar) { //#pragma unroll for (unsigned int i = 0; i < BLOCK_SIZE / sizeof(T); i++){ // WRAM READ T temp = bufferA[i]; #ifdef ADD temp += scalar; // ADD #elif SUB temp -= scalar; // SUB #elif MUL temp *= scalar; // MUL #elif DIV temp /= scalar; // DIV #endif // WRAM WRITE bufferA[i] = temp; } } // Barrier BARRIER_INIT(my_barrier, NR_TASKLETS); extern int main_kernel1(void); int (*kernels[nr_kernels])(void) = {main_kernel1}; int main(void) { // Kernel return kernels[DPU_INPUT_ARGUMENTS.kernel](); } // main_kernel1 int main_kernel1() { unsigned int tasklet_id = me(); #if PRINT printf("tasklet_id = %u\n", tasklet_id); #endif if (tasklet_id == 0){ // Initialize once the cycle counter mem_reset(); // Reset the heap perfcounter_config(COUNT_CYCLES, true); } // Barrier barrier_wait(&my_barrier); perfcounter_cycles cycles; uint32_t input_size_dpu = DPU_INPUT_ARGUMENTS.size / sizeof(T); T scalar = (T)input_size_dpu; // Simply use this number as a scalar dpu_results_t *result = &DPU_RESULTS[tasklet_id]; result->cycles = 0; // Address of the current processing block in MRAM uint32_t mram_base_addr_A = (uint32_t)(DPU_MRAM_HEAP_POINTER + (tasklet_id << BLOCK_SIZE_LOG2)); uint32_t mram_base_addr_B = (uint32_t)(DPU_MRAM_HEAP_POINTER + (tasklet_id << BLOCK_SIZE_LOG2) + input_size_dpu * sizeof(T)); // Initialize a local cache to store the MRAM block T *cache_A = (T *) mem_alloc(BLOCK_SIZE); for(unsigned int byte_index = 0; byte_index < input_size_dpu * sizeof(T); byte_index += BLOCK_SIZE * NR_TASKLETS){ // Load cache with current MRAM block mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE); // Barrier barrier_wait(&my_barrier); timer_start(&cycles); // START TIMER // Update update(cache_A, scalar); result->cycles += timer_stop(&cycles); // STOP TIMER // Barrier barrier_wait(&my_barrier); // Write cache to current MRAM block mram_write(cache_A, (__mram_ptr void*)(mram_base_addr_B + byte_index), BLOCK_SIZE); } return 0; }