/** * app.c * CPU-DPU Communication Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" #if NUMA #include #include #include #include void* mp_pages[1]; int mp_status[1]; int mp_nodes[1]; int numa_node_in = -1; int numa_node_out = -1; int numa_node_rank = -1; int numa_node_cpu = -1; #endif // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x // Pointer declaration static T* A; static T* B; static T* C; static const char transfer_mode[] = #if SERIAL "SERIAL" #elif BROADCAST "BROADCAST" #else "PUSH" #endif ; // Create input arrays static void read_input(T* A, T* B, unsigned int nr_elements) { srand(0); //printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = A[i]; } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; char ntpp[24]; // Timer declaration Timer timer; snprintf(ntpp, 24, "nrThreadPerPool=%d", p.n_threads); // Allocate DPUs and load binary start(&timer, 4, 0); #if NR_DPUS DPU_ASSERT(dpu_alloc(NR_DPUS, ntpp, &dpu_set)); #elif NR_RANKS DPU_ASSERT(dpu_alloc_ranks(NR_RANKS, ntpp, &dpu_set)); #else #error "NR_DPUS o NR_RANKS must be set" #endif stop(&timer, 4); start(&timer, 5, 0); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); stop(&timer, 5); start(&timer, 6, 0); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); stop(&timer, 6); //printf("Allocated %d DPU(s)\n", nr_of_dpus); unsigned int i = 0; uint64_t input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; //printf("Load input data\n"); // Input arguments const uint64_t input_size_dpu = input_size / nr_of_dpus; #ifdef BROADCAST const uint64_t transfer_size = input_size; #else const uint64_t transfer_size = input_size; #endif // Input/output allocation #if NUMA if (p.bitmask_in) { numa_set_membind(p.bitmask_in); numa_free_nodemask(p.bitmask_in); } A = numa_alloc(input_size * sizeof(T)); B = numa_alloc(input_size * sizeof(T)); #else A = malloc(input_size * sizeof(T)); B = malloc(input_size * sizeof(T)); #endif #if NUMA if (p.bitmask_out) { numa_set_membind(p.bitmask_out); numa_free_nodemask(p.bitmask_out); } C = numa_alloc(input_size * sizeof(T)); #else C = malloc(input_size * sizeof(T)); #endif T *bufferA = A; T *bufferC = C; #if NUMA struct bitmask *bitmask_all = numa_allocate_nodemask(); numa_bitmask_setall(bitmask_all); numa_set_membind(bitmask_all); numa_free_nodemask(bitmask_all); #endif #if NUMA mp_pages[0] = A; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_in = mp_status[0]; } mp_pages[0] = C; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(C)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_out = mp_status[0]; } numa_node_cpu = p.numa_node_cpu; if (numa_node_cpu != -1) { if (numa_run_on_node(numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } #endif #if NUMA int prev_rank_id = -1; int rank_id = -1; DPU_FOREACH (dpu_set, dpu) { rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu))); if (rank_id != prev_rank_id) { printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank); prev_rank_id = rank_id; } /* printf("DPU @ rank %d slice.member %d.%d\n", rank_id, dpu_get_slice_id(dpu_from_set(dpu)), dpu_get_member_id(dpu_from_set(dpu)) ); */ } #endif // Create an input file with arbitrary data read_input(A, B, input_size); //printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL); printf("[::] NMC reconfiguration | n_dpus=%d n_ranks=%d n_tasklets=%d n_nops=%d n_instr=%d e_type=%s n_elements=%lu e_mode=%s" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_node_rank=%d" #endif " | latency_dpu_alloc_ns=%lu latency_dpu_load_ns=%lu latency_dpu_get_ns=%lu\n", nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, transfer_mode, #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_node_rank, #endif timer.nanoseconds[4], timer.nanoseconds[5], timer.nanoseconds[6]); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Copy input arrays if(rep >= p.n_warmup) start(&timer, 1, 0); i = 0; #ifdef SERIAL DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T))); i++; } #elif BROADCAST DPU_ASSERT(dpu_broadcast_to(dpu_set, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA, input_size * sizeof(T), DPU_XFER_DEFAULT)); #else DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferA + input_size_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT)); #endif if(rep >= p.n_warmup) stop(&timer, 1); //printf("Run program on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup) start(&timer, 2, 0); // empty kernel -> measure communication overhead DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) stop(&timer, 2); #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif //printf("Retrieve results\n"); if(rep >= p.n_warmup) start(&timer, 3, 0); i = 0; #ifdef SERIAL DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferC + input_size_dpu * i, input_size_dpu * sizeof(T))); i++; } #else DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferC + input_size_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu * sizeof(T), DPU_XFER_DEFAULT)); #endif if(rep >= p.n_warmup) stop(&timer, 3); if (rep >= p.n_warmup) { printf("[::] transfer UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d n_nops=%d n_instr=%d e_type=%s n_elements=%lu n_elements_per_dpu=%lu e_mode=%s" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_node_rank=%d" #endif " | latency_dram_mram_ns=%lu latency_mram_dram_ns=%lu throughput_dram_mram_Bps=%f throughput_mram_dram_Bps=%f", #ifdef BROADCAST nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, transfer_size, transfer_mode, #else nr_of_dpus, nr_of_ranks, NR_TASKLETS, p.n_nops, p.n_instr, XSTR(T), transfer_size, transfer_size / nr_of_dpus, transfer_mode, #endif #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_node_rank, #endif timer.nanoseconds[1], timer.nanoseconds[3], transfer_size * sizeof(T) * 1e9 / timer.nanoseconds[1], transfer_size * sizeof(T) * 1e9 / timer.nanoseconds[3]); printf(" throughput_dram_mram_Opps=%f throughput_mram_dram_Opps=%f", transfer_size * 1e9 / timer.nanoseconds[1], transfer_size * 1e9 / timer.nanoseconds[3]); printf(" latency_dpu_launch_ns=%lu\n", timer.nanoseconds[2]); } } // Check output bool status = true; #ifdef BROADCAST for (i = 0; i < input_size/nr_of_dpus; i++) { if(B[i] != bufferC[i]){ status = false; #if PRINT printf("%d: %u -- %u\n", i, B[i], bufferA[i]); #endif } } #else for (i = 0; i < input_size; i++) { if(B[i] != bufferC[i]){ status = false; #if PRINT printf("%d: %u -- %u\n", i, B[i], bufferA[i]); #endif } } #endif if (status) { //printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } // Deallocation #if NUMA numa_free(A, input_size * sizeof(T)); numa_free(B, input_size * sizeof(T)); numa_free(C, input_size * sizeof(T)); #else free(A); free(B); free(C); #endif DPU_ASSERT(dpu_free(dpu_set)); return 0; }