/** * app.c * MRAM Latency Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x // Pointer declaration static T* A; static T* B; static T* C2; // Create input arrays static void read_input(T* A, T* B, unsigned int nr_elements) { srand(0); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = (T) (rand()); } } // Compute output in the host static void stream_host(T* C, T* A, unsigned int nr_elements) { for (unsigned int i = 0; i < nr_elements; i++) { C[i] = A[i]; } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t clocks_per_sec; uint32_t nr_of_dpus; uint32_t nr_of_ranks; // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); unsigned int i = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; assert(input_size % (nr_of_dpus * NR_TASKLETS) == 0 && "Input size!"); // Input/output allocation A = malloc(input_size * sizeof(T)); B = malloc(input_size * sizeof(T)); T *bufferA = A; T *bufferB = B; C2 = malloc(input_size * sizeof(T)); // Create an input file with arbitrary data read_input(A, B, input_size); // Timer declaration Timer timer; // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, rep - p.n_warmup); stream_host(C2, A, input_size); if(rep >= p.n_warmup) stop(&timer, 0); if(rep >= p.n_warmup) start(&timer, 1, rep - p.n_warmup); // Input arguments const unsigned int input_size_dpu = input_size / nr_of_dpus; unsigned int kernel = 0; dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel}; DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments))); // Copy input arrays i = 0; DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T))); i++; } if(rep >= p.n_warmup) stop(&timer, 1); // Run DPU kernel if(rep >= p.n_warmup) start(&timer, 2, rep - p.n_warmup); DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) stop(&timer, 2); #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif if(rep >= p.n_warmup) start(&timer, 3, rep - p.n_warmup); i = 0; DPU_FOREACH (dpu_set, dpu) { // Copy output array DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T))); #if PERF DPU_ASSERT(dpu_copy_from(dpu, "CLOCKS_PER_SEC", 0, &clocks_per_sec, sizeof(clocks_per_sec))); // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { dpu_results_t result; result.count = 0; result.r_cycles = 0; result.w_cycles = 0; DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t))); printf("[::] DMA UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s n_elements=%u block_size_B=%d" " | latency_mram_read_us=%f latency_mram_write_us=%f" " throughput_dpu_mram_read_MBps=%f throughput_dpu_mram_write_MBps=%f" " throughput_tasklet_mram_read_MBps=%f throughput_tasklet_mram_write_MBps=%f\n", nr_of_dpus, nr_of_ranks, NR_TASKLETS, XSTR(T), input_size_dpu, BLOCK_SIZE, ((double)result.r_cycles * 1e6 / clocks_per_sec) / result.count, ((double)result.w_cycles * 1e6 / clocks_per_sec) / result.count, input_size_dpu * sizeof(T) / ((double)result.r_cycles * 1e6 / clocks_per_sec), input_size_dpu * sizeof(T) / ((double)result.w_cycles * 1e6 / clocks_per_sec), input_size_dpu * sizeof(T) / ((double)result.r_cycles * 1e6 * NR_TASKLETS / clocks_per_sec), input_size_dpu * sizeof(T) / ((double)result.w_cycles * 1e6 * NR_TASKLETS / clocks_per_sec)); } #endif i++; } if(rep >= p.n_warmup) stop(&timer, 3); } // Check output bool status = true; for (i = 0; i < input_size; i++) { if(C2[i] != bufferB[i]){ status = false; #if PRINT printf("%d: %u -- %u\n", i, C2[i], bufferB[i]); #endif } } if (status) { } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } // Deallocation free(A); free(B); free(C2); DPU_ASSERT(dpu_free(dpu_set)); return status ? 0 : -1; }