/* * Arithmetic Throughtput versus Operational Intensity * */ #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/cyclecount.h" __host dpu_arguments_t DPU_INPUT_ARGUMENTS; __host dpu_results_t DPU_RESULTS[NR_TASKLETS]; // Update static void update(T* bufferA, T scalar, uint32_t rep, uint32_t str) { for (unsigned int r = 0; r < rep; r++){ for (unsigned int i = 0; i < BLOCK_SIZE / sizeof(T); i+=str){ #ifdef ADD bufferA[i] += scalar; // ADD #elif SUB bufferA[i] -= scalar; // SUB #elif MUL bufferA[i] *= scalar; // MUL #elif DIV bufferA[i] /= scalar; // DIV #endif } } } // Barrier BARRIER_INIT(my_barrier, NR_TASKLETS); extern int main_kernel1(void); int (*kernels[nr_kernels])(void) = {main_kernel1}; int main(void) { // Kernel return kernels[DPU_INPUT_ARGUMENTS.kernel](); } // main_kernel1 int main_kernel1() { unsigned int tasklet_id = me(); #if PRINT printf("tasklet_id = %u\n", tasklet_id); #endif if (tasklet_id == 0){ // Initialize once the cycle counter mem_reset(); // Reset the heap perfcounter_config(COUNT_CYCLES, true); } // Barrier barrier_wait(&my_barrier); perfcounter_cycles cycles; uint32_t input_size_dpu = DPU_INPUT_ARGUMENTS.size / sizeof(T); uint32_t rep = DPU_INPUT_ARGUMENTS.repetitions; uint32_t str = DPU_INPUT_ARGUMENTS.stride; T scalar = DPU_INPUT_ARGUMENTS.scalar; // Simply use this number as a scalar dpu_results_t *result = &DPU_RESULTS[tasklet_id]; result->cycles = 0; // Address of the current processing block in MRAM uint32_t mram_base_addr_A = (uint32_t)(DPU_MRAM_HEAP_POINTER + (tasklet_id << BLOCK_SIZE_LOG2)); uint32_t mram_base_addr_B = (uint32_t)(DPU_MRAM_HEAP_POINTER + (tasklet_id << BLOCK_SIZE_LOG2) + input_size_dpu * sizeof(T)); // Initialize a local cache to store the MRAM block T *cache_A = (T *) mem_alloc(BLOCK_SIZE); barrier_wait(&my_barrier); timer_start(&cycles); // START TIMER for(unsigned int byte_index = 0; byte_index < input_size_dpu * sizeof(T); byte_index += BLOCK_SIZE * NR_TASKLETS){ // Load cache with current MRAM block mram_read((__mram_ptr void const*)(mram_base_addr_A + byte_index), cache_A, BLOCK_SIZE); // Update update(cache_A, scalar, rep, str); // Write cache to current MRAM block mram_write(cache_A, (__mram_ptr void*)(mram_base_addr_B + byte_index), BLOCK_SIZE); } result->cycles = timer_stop(&cycles); // STOP TIMER barrier_wait(&my_barrier); return 0; }