/** * app.c * Random Access (GUPS) Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif // Pointer declaration static T* A; static T* B; // Create input arrays static void read_input(T* A, T* B, unsigned int nr_elements) { srand(0); printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = A[i]; } } // Compute output in the host static void gups_host(T* B, unsigned int nr_elements) { // Number of updates to table (suggested: 16x number of table entries) unsigned int NUPDATE = 16 * (nr_elements / NR_DPUS); for (unsigned int d = 0; d < NR_DPUS; d++){ T ran[128]; // Current random numbers for(unsigned int j = 0; j < 128; j++){ ran[j] = HPCC_starts((NUPDATE/128) * j); } for (unsigned int i = 0; i < NUPDATE/128; i++){ for (unsigned int j = 0; j < NR_TASKLETS; j++){ for (unsigned int k = j; k < 128; k += NR_TASKLETS){ ran[k] = (ran[k] << 1) ^ ((S) ran[k] < 0 ? POLY : 0); //B[((nr_elements / NR_DPUS) * d) + (ran[k] & ((nr_elements / NR_DPUS) - 1))] ^= ran[k]; B[((nr_elements / NR_DPUS) * d) + (ran[k] & ((nr_elements / NR_DPUS) - 1))] = ran[k] & ((nr_elements / NR_DPUS) - 1); } } } } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); printf("Allocated %d DPU(s)\n", nr_of_dpus); unsigned int i = 0; double cc = 0; double cc_min = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; // Input/output allocation A = malloc(input_size * sizeof(T)); B = malloc(input_size * sizeof(T)); T *bufferA = A; // Create an input file with arbitrary data read_input(A, B, input_size); // Timer declaration Timer timer; printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, rep - p.n_warmup); gups_host(B, input_size); if(rep >= p.n_warmup) stop(&timer, 0); printf("Load input data\n"); if(rep >= p.n_warmup) start(&timer, 1, rep - p.n_warmup); // Input arguments const unsigned int input_size_dpu = input_size / nr_of_dpus; unsigned int kernel = 0; dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel}; DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments))); // Copy input arrays i = 0; DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T))); i++; } if(rep >= p.n_warmup) stop(&timer, 1); printf("Run program on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup) start(&timer, 2, rep - p.n_warmup); DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) stop(&timer, 2); #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif printf("Retrieve results\n"); if(rep >= p.n_warmup) start(&timer, 3, rep - p.n_warmup); dpu_results_t results[nr_of_dpus]; i = 0; DPU_FOREACH (dpu_set, dpu) { // Copy output array DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T))); #if PERF results[i].cycles = 0; // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { dpu_results_t result; result.cycles = 0; DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t))); if (result.cycles > results[i].cycles) results[i].cycles = result.cycles; } #endif i++; } if(rep >= p.n_warmup) stop(&timer, 3); #if PERF uint64_t max_cycles = 0; uint64_t min_cycles = 0xFFFFFFFFFFFFFFFF; // Print performance results if(rep >= p.n_warmup){ i = 0; DPU_FOREACH(dpu_set, dpu) { if(results[i].cycles > max_cycles) max_cycles = results[i].cycles; if(results[i].cycles < min_cycles) min_cycles = results[i].cycles; i++; } cc += (double)max_cycles; cc_min += (double)min_cycles; } #endif } printf("DPU cycles = %g cc\n", cc / p.n_reps); // Print timing results printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU "); print(&timer, 1, p.n_reps); printf("DPU Kernel "); print(&timer, 2, p.n_reps); printf("DPU-CPU "); print(&timer, 3, p.n_reps); // Check output bool status = true; for (i = 0; i < input_size; i++) { if(B[i] != bufferA[i]){ status = false; #if PRINT printf("%d: %lu -- %lu\n", i, B[i], bufferA[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } // Deallocation free(A); free(B); DPU_ASSERT(dpu_free(dpu_set)); return status ? 0 : -1; }