/** * app.c * STREAM Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x #if WITH_DPUINFO #include #include #endif #if SDK_SINGLETHREADED #define DPU_ALLOC_PROFILE "nrThreadsPerRank=0" #else #define DPU_ALLOC_PROFILE NULL #endif // Pointer declaration static T* A; static T* B; #if defined(add) || defined(triad) static T* C; #endif static T* C2; // Create input arrays static void read_input(T* A, T* B, unsigned int nr_elements) { srand(0); printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = (T) (rand()); } } static char benchmark_name[] = #ifdef scale "SCALE" #elif add "ADD" #elif triad "TRIAD" #elif copy "COPY" #elif copyw "COPYW" #endif ; static char mem_name[] = #ifdef WRAM "WRAM" #endif #ifdef MRAM "MRAM" #endif ; // Compute output in the host #if defined(add) || defined(triad) static void stream_host(T* C, T* B, T* A, unsigned int nr_elements) { #else static void stream_host(T* C, T* A, unsigned int nr_elements) { #endif for (unsigned int i = 0; i < nr_elements; i++) { #ifdef scale C[i] = (nr_elements / NR_DPUS) * A[i]; #elif add C[i] = A[i] + B[i]; #elif triad C[i] = A[i] + (nr_elements / NR_DPUS) * B[i]; #else // copy C[i] = A[i]; #endif } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; printf("WITH_ALLOC_OVERHEAD=%d WITH_LOAD_OVERHEAD=%d WITH_FREE_OVERHEAD=%d\n", WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD); // Timer declaration Timer timer; // Allocate DPUs and load binary #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_alloc(NR_DPUS, DPU_ALLOC_PROFILE, &dpu_set)); timer.nanoseconds[0] = 0; // alloc #endif #if !WITH_LOAD_OVERHEAD DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); timer.nanoseconds[1] = 0; // load #endif #if !WITH_FREE_OVERHEAD timer.nanoseconds[6] = 0; // free #endif unsigned int i = 0; double cc = 0; double cc_min = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * NR_DPUS : p.input_size; #if defined(add) || defined(triad) const unsigned int n_arrays = 2; #else const unsigned int n_arrays = 1; #endif // Input/output allocation A = malloc(input_size * sizeof(T)); B = malloc(input_size * sizeof(T)); T *bufferA = A; T *bufferB = B; #if defined(add) || defined(triad) C = malloc(input_size * sizeof(T)); T *bufferC = C; #endif C2 = malloc(input_size * sizeof(T)); // Create an input file with arbitrary data read_input(A, B, input_size); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { #if WITH_ALLOC_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 0, 0); } DPU_ASSERT(dpu_alloc(NR_DPUS, DPU_ALLOC_PROFILE, &dpu_set)); if(rep >= p.n_warmup) { stop(&timer, 0); } #endif #if WITH_DPUINFO printf("DPUs:"); DPU_FOREACH (dpu_set, dpu) { int rank = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; int slice = dpu_get_slice_id(dpu_from_set(dpu)); int member = dpu_get_member_id(dpu_from_set(dpu)); printf(" %d(%d.%d)", rank, slice, member); } printf("\n"); #endif #if WITH_LOAD_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 1, 0); } DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); if(rep >= p.n_warmup) { stop(&timer, 1); } DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); #endif // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) { start(&timer, 2, 0); } #if defined(add) || defined(triad) stream_host(C2, B, A, input_size); #else stream_host(C2, A, input_size); #endif if(rep >= p.n_warmup) { stop(&timer, 2); } if(rep >= p.n_warmup) { start(&timer, 3, 0); } // Input arguments const unsigned int input_size_dpu = input_size / NR_DPUS; unsigned int kernel = 0; dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel}; DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments))); // Copy input arrays i = 0; DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T))); #if defined(add) || defined(triad) DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T))); #endif i++; } if(rep >= p.n_warmup) { stop(&timer, 3); } // Run DPU kernel if(rep >= p.n_warmup) { start(&timer, 4, 0); } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) { stop(&timer, 4); } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif if(rep >= p.n_warmup) { start(&timer, 5, 0); } dpu_results_t results[NR_DPUS]; i = 0; DPU_FOREACH (dpu_set, dpu) { // Copy output array #if defined(add) || defined(triad) DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, 2 * input_size_dpu * sizeof(T), bufferC + input_size_dpu * i, input_size_dpu * sizeof(T))); #else DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T))); #endif i++; } if(rep >= p.n_warmup) { stop(&timer, 5); } #if PERF i = 0; DPU_FOREACH (dpu_set, dpu) { results[i].cycles = 0; // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { dpu_results_t result; result.cycles = 0; DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t))); if (result.cycles > results[i].cycles) results[i].cycles = result.cycles; } i++; } #endif #if PERF uint64_t max_cycles = 0; uint64_t min_cycles = 0xFFFFFFFFFFFFFFFF; // Print performance results if(rep >= p.n_warmup){ i = 0; DPU_FOREACH(dpu_set, dpu) { if(results[i].cycles > max_cycles) max_cycles = results[i].cycles; if(results[i].cycles < min_cycles) min_cycles = results[i].cycles; i++; } cc += (double)max_cycles; cc_min += (double)min_cycles; } #endif #if WITH_ALLOC_OVERHEAD #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 6, 0); } #endif DPU_ASSERT(dpu_free(dpu_set)); #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { stop(&timer, 6); } #endif #endif // Check output bool status = true; for (i = 0; i < input_size; i++) { #if defined(add) || defined(triad) if(C2[i] != bufferC[i]){ #else if(C2[i] != bufferB[i]){ #endif status = false; #if PRINT #if defined(add) || defined(triad) printf("%d: %u -- %u\n", i, C2[i], bufferC[i]); #else printf("%d: %u -- %u\n", i, C2[i], bufferB[i]); #endif #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); printf("[::] STREAM UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_benchmark=%-6s e_type=%s e_mem=%s b_unroll=%d block_size_B=%d n_elements=%d n_elements_per_dpu=%d b_sdk_singlethreaded=%d ", NR_DPUS, nr_of_ranks, NR_TASKLETS, benchmark_name, XSTR(T), mem_name, UNROLL, BLOCK_SIZE, input_size, input_size / NR_DPUS, SDK_SINGLETHREADED); printf("| latency_alloc_ns=%lu latency_load_ns=%lu latency_cpu_ns=%lu latency_write_ns=%lu latency_kernel_ns=%lu latency_read_ns=%lu latency_free_ns=%lu", timer.nanoseconds[0], timer.nanoseconds[1], timer.nanoseconds[2], timer.nanoseconds[3], timer.nanoseconds[4], timer.nanoseconds[5], timer.nanoseconds[6]); printf(" throughput_cpu_Bps=%f throughput_upmem_kernel_Bps=%f throughput_upmem_total_Bps=%f", input_size * n_arrays * sizeof(T) * 1e9 / timer.nanoseconds[2], input_size * n_arrays * sizeof(T) * 1e9 / (timer.nanoseconds[4]), input_size * n_arrays * sizeof(T) * 1e9 / (timer.nanoseconds[0] + timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5] + timer.nanoseconds[6])); printf(" throughput_upmem_wxr_Bps=%f throughput_upmem_lwxr_Bps=%f throughput_upmem_alwxr_Bps=%f", input_size * n_arrays * sizeof(T) * 1e9 / (timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5]), input_size * n_arrays * sizeof(T) * 1e9 / (timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5]), input_size * n_arrays * sizeof(T) * 1e9 / (timer.nanoseconds[0] + timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5])); printf(" throughput_cpu_Opps=%f throughput_upmem_kernel_Opps=%f throughput_upmem_total_Opps=%f", input_size * 1e9 / timer.nanoseconds[2], input_size * 1e9 / (timer.nanoseconds[4]), input_size * 1e9 / (timer.nanoseconds[0] + timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5] + timer.nanoseconds[6])); printf(" throughput_upmem_wxr_Opps=%f throughput_upmem_lwxr_Opps=%f throughput_upmem_alwxr_Opps=%f\n", input_size * 1e9 / (timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5]), input_size * 1e9 / (timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5]), input_size * 1e9 / (timer.nanoseconds[0] + timer.nanoseconds[1] + timer.nanoseconds[3] + timer.nanoseconds[4] + timer.nanoseconds[5])); } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } // Deallocation free(A); free(B); #if defined(add) || defined(triad) free(C); #endif free(C2); #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_free(dpu_set)); #endif return 0; }