/** * app.c * WRAM Access Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x // Pointer declaration static unsigned int* A; static T* B; static T* C; static T* C2; // Create input arrays #ifdef strided static void read_input(unsigned int* A, T* B, unsigned int nr_elements, unsigned int stride) { #else static void read_input(unsigned int* A, T* B, unsigned int nr_elements) { #endif srand(0); for (unsigned int i = 0; i < nr_elements; i++) { #ifdef streaming A[i] = i % (BLOCK_SIZE >> DIV); #elif strided A[i] = ((i>0 ? A[i-1]:0) + stride) % (BLOCK_SIZE >> DIV); #else A[i] = ((unsigned int)rand()) % (BLOCK_SIZE >> DIV); #endif B[i] = (T)(rand()); C[i] = 0; } } #ifdef streaming char transfer_mode[] = "streaming"; #elif strided char transfer_mode[] = "strided"; #else char transfer_mode[] = "random"; #endif // Compute output in the host static void copy_host(T* C, T* B, unsigned int* A, unsigned int nr_elements) { unsigned int wram_size = BLOCK_SIZE >> DIV; for (unsigned int i = 0; i < nr_elements / wram_size; i++) { for (unsigned int j = 0; j < wram_size; j++) { unsigned int address = A[i * wram_size + j]; C[i * wram_size + address] = B[i * wram_size + address]; } } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t clocks_per_sec; uint32_t nr_of_dpus; uint32_t nr_of_ranks; // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); unsigned int i = 0; double cc = 0; double cc_min = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; // Input/output allocation A = malloc(input_size * sizeof(unsigned int)); unsigned int *bufferA = A; B = malloc(input_size * sizeof(T)); T *bufferB = B; C = malloc(input_size * sizeof(T)); T *bufferC = C; C2 = malloc(input_size * sizeof(T)); // Create an input file with arbitrary data #ifdef strided read_input(A, B, input_size, p.stride); #else read_input(A, B, input_size); #endif // Timer declaration Timer timer; // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, rep - p.n_warmup); copy_host(C2, B, A, input_size); if(rep >= p.n_warmup) stop(&timer, 0); if(rep >= p.n_warmup) start(&timer, 1, rep - p.n_warmup); // Input arguments const unsigned int input_size_dpu = input_size / nr_of_dpus; unsigned int kernel = 0; dpu_arguments_t input_arguments = {input_size_dpu, kernel}; DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments))); // Copy input arrays i = 0; DPU_FOREACH (dpu_set, dpu) { DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(unsigned int))); DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(unsigned int), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T))); DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * (sizeof(unsigned int) + sizeof(T)), bufferC + input_size_dpu * i, input_size_dpu * sizeof(T))); i++; } if(rep >= p.n_warmup) stop(&timer, 1); // Run DPU kernel if(rep >= p.n_warmup) start(&timer, 2, rep - p.n_warmup); DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) stop(&timer, 2); #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif if(rep >= p.n_warmup) start(&timer, 3, rep - p.n_warmup); dpu_results_t results[nr_of_dpus]; i = 0; DPU_FOREACH (dpu_set, dpu) { // Copy output array DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * (sizeof(unsigned int) + sizeof(T)), bufferC + input_size_dpu * i, input_size_dpu * sizeof(T))); #if PERF results[i].cycles = 0; DPU_ASSERT(dpu_copy_from(dpu, "CLOCKS_PER_SEC", 0, &clocks_per_sec, sizeof(clocks_per_sec))); // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { dpu_results_t result; result.cycles = 0; result.count = 0; DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t))); printf("[::] COPY UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s n_elements=%u e_mode=%s block_size_B=%d" " | latency_block_copy_us=%f throughput_dpu_copy_MBps=%f throughput_tasklet_copy_MBps=%f\n", nr_of_dpus, nr_of_ranks, NR_TASKLETS, XSTR(T), input_size_dpu, transfer_mode, BLOCK_SIZE, ((double)result.cycles * 1e6 / clocks_per_sec) / result.count, input_size_dpu * sizeof(T) / ((double)result.cycles * 1e6 / clocks_per_sec), input_size_dpu * sizeof(T) / ((double)result.cycles * 1e6 * NR_TASKLETS / clocks_per_sec)); if (result.cycles > results[i].cycles) results[i].cycles = result.cycles; } #endif i++; } if(rep >= p.n_warmup) stop(&timer, 3); #if PERF uint64_t max_cycles = 0; uint64_t min_cycles = 0xFFFFFFFFFFFFFFFF; // Print performance results if(rep >= p.n_warmup){ i = 0; DPU_FOREACH(dpu_set, dpu) { if(results[i].cycles > max_cycles) max_cycles = results[i].cycles; if(results[i].cycles < min_cycles) min_cycles = results[i].cycles; i++; } cc += (double)max_cycles; cc_min += (double)min_cycles; } #endif } // Check output bool status = true; for (i = 0; i < input_size; i++) { if(C2[i] != bufferC[i]){ status = false; #if PRINT printf("%d: %u -- %u\n", i, C2[i], bufferC[i]); #endif } } // Deallocation free(A); free(B); free(C); free(C2); DPU_ASSERT(dpu_free(dpu_set)); return status ? 0 : -1; }