/** * app.c * RED Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x #if ENERGY #include #endif // Pointer declaration static T* A; // Create input arrays static void read_input(T* A, unsigned int nr_elements) { srand(0); //printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T)(rand()); } } // Compute output in the host static T reduction_host(T* A, unsigned int nr_elements) { T count = 0; for (unsigned int i = 0; i < nr_elements; i++) { count += A[i]; } return count; } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); //printf("Allocated %d DPU(s)\n", nr_of_dpus); unsigned int i = 0; #if PERF double cc = 0; double cc_min = 0; #endif const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; // Total input size (weak or strong scaling) const unsigned int input_size_8bytes = ((input_size * sizeof(T)) % 8) != 0 ? roundup(input_size, 8) : input_size; // Input size per DPU (max.), 8-byte aligned const unsigned int input_size_dpu = divceil(input_size, nr_of_dpus); // Input size per DPU (max.) const unsigned int input_size_dpu_8bytes = ((input_size_dpu * sizeof(T)) % 8) != 0 ? roundup(input_size_dpu, 8) : input_size_dpu; // Input size per DPU (max.), 8-byte aligned // Input/output allocation A = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); T *bufferA = A; T count = 0; T count_host = 0; // Create an input file with arbitrary data read_input(A, input_size); // Timer declaration Timer timer; //printf("NR_TASKLETS\t%d\tBL\t%d\n", NR_TASKLETS, BL); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, 0); count_host = reduction_host(A, input_size); if(rep >= p.n_warmup) stop(&timer, 0); //printf("Load input data\n"); if(rep >= p.n_warmup) start(&timer, 1, 0); count = 0; // Input arguments unsigned int kernel = 0; dpu_arguments_t input_arguments[NR_DPUS]; for(i=0; i= p.n_warmup) stop(&timer, 1); //printf("Run program on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup) { start(&timer, 2, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) { stop(&timer, 2); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif //printf("Retrieve results\n"); dpu_results_t results[nr_of_dpus]; T* results_count = malloc(nr_of_dpus * sizeof(T)); if(rep >= p.n_warmup) start(&timer, 3, 0); i = 0; // PARALLEL RETRIEVE TRANSFER dpu_results_t* results_retrieve[nr_of_dpus]; DPU_FOREACH(dpu_set, dpu, i) { results_retrieve[i] = (dpu_results_t*)malloc(NR_TASKLETS * sizeof(dpu_results_t)); DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i])); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_results_t), DPU_XFER_DEFAULT)); DPU_FOREACH(dpu_set, dpu, i) { // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { if(each_tasklet == 0) results[i].t_count = results_retrieve[i][each_tasklet].t_count; } #if !PERF free(results_retrieve[i]); #endif // Sequential reduction count += results[i].t_count; #if PRINT printf("i=%d -- %lu\n", i, count); #endif } #if PERF DPU_FOREACH(dpu_set, dpu, i) { results[i].cycles = 0; // Retrieve tasklet timings for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { if (results_retrieve[i][each_tasklet].cycles > results[i].cycles) results[i].cycles = results_retrieve[i][each_tasklet].cycles; } free(results_retrieve[i]); } #endif if(rep >= p.n_warmup) stop(&timer, 3); #if PERF uint64_t max_cycles = 0; uint64_t min_cycles = 0xFFFFFFFFFFFFFFFF; // Print performance results if(rep >= p.n_warmup){ i = 0; DPU_FOREACH(dpu_set, dpu) { if(results[i].cycles > max_cycles) max_cycles = results[i].cycles; if(results[i].cycles < min_cycles) min_cycles = results[i].cycles; i++; } cc += (double)max_cycles; cc_min += (double)min_cycles; } #endif // Free memory free(results_count); // Check output bool status = true; if(count != count_host) status = false; if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); if (rep >= p.n_warmup) { printf("[::] RED NMC | n_dpus=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d " "| throughput_cpu_MBps=%f throughput_pim_MBps=%f throughput_MBps=%f", nr_of_dpus, NR_TASKLETS, XSTR(T), BLOCK_SIZE, input_size, input_size * sizeof(T) / timer.time[0], input_size * sizeof(T) / (timer.time[2] + timer.time[3]), input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3])); printf(" throughput_cpu_MOpps=%f throughput_pim_MOpps=%f throughput_MOpps=%f", input_size / timer.time[0], input_size / (timer.time[2] + timer.time[3]), input_size / (timer.time[1] + timer.time[2] + timer.time[3])); printall(&timer, 3); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } #if PERF printf("DPU cycles = %g cc\n", cc / p.n_reps); #endif // Print timing results /* printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU "); print(&timer, 1, p.n_reps); printf("DPU Kernel "); print(&timer, 2, p.n_reps); printf("Inter-DPU "); print(&timer, 3, p.n_reps); */ #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A); DPU_ASSERT(dpu_free(dpu_set)); return 0; }