/* * JGL@SAFARI */ /** * CPU code with Thrust */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../support/common.h" #include "../../support/timer.h" #if NUMA #include #include void* mp_pages[1]; int mp_status[1]; int mp_nodes[1]; int numa_node_in = -1; int numa_node_out = -1; int numa_node_cpu = -1; #endif #define XSTR(x) STR(x) #define STR(x) #x #define ANSI_COLOR_RED "\x1b[31m" #define ANSI_COLOR_GREEN "\x1b[32m" #define ANSI_COLOR_RESET "\x1b[0m" // Pointer declaration static T* A; static T* C; /** * @brief creates input arrays * @param nr_elements how many elements in input arrays */ static void read_input(T* A, unsigned int nr_elements) { //srand(0); printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { //A[i] = (T) (rand()) % 2; A[i] = i; } } /** * @brief compute output in the host */ static void scan_host(T* C, T* A, unsigned int nr_elements) { C[0] = A[0]; for (unsigned int i = 1; i < nr_elements; i++) { C[i] = C[i - 1] + A[i - 1]; } } // Params --------------------------------------------------------------------- typedef struct Params { unsigned int input_size; int n_warmup; int n_reps; int n_threads; int exp; #if NUMA struct bitmask* bitmask_in; struct bitmask* bitmask_out; int numa_node_cpu; #endif }Params; void usage() { fprintf(stderr, "\nUsage: ./program [options]" "\n" "\nGeneral options:" "\n -h help" "\n -w # of untimed warmup iterations (default=1)" "\n -e # of timed repetition iterations (default=3)" "\n -x Weak (0) or strong (1) scaling (default=0)" "\n -t # of threads (default=8)" "\n" "\nBenchmark-specific options:" "\n -i input size (default=8M elements)" "\n"); } struct Params input_params(int argc, char **argv) { struct Params p; p.input_size = 2 << 20; p.n_warmup = 1; p.n_reps = 3; p.exp = 0; p.n_threads = 8; #if NUMA p.bitmask_in = NULL; p.bitmask_out = NULL; p.numa_node_cpu = -1; #endif int opt; while((opt = getopt(argc, argv, "hi:w:e:x:t:a:b:c:")) >= 0) { switch(opt) { case 'h': usage(); exit(0); break; case 'i': p.input_size = atoi(optarg); break; case 'w': p.n_warmup = atoi(optarg); break; case 'e': p.n_reps = atoi(optarg); break; case 'x': p.exp = atoi(optarg); break; case 't': p.n_threads = atoi(optarg); break; #if NUMA case 'a': p.bitmask_in = numa_parse_nodestring(optarg); break; case 'b': p.bitmask_out = numa_parse_nodestring(optarg); break; case 'c': p.numa_node_cpu = atoi(optarg); break; #endif default: fprintf(stderr, "\nUnrecognized option!\n"); usage(); exit(0); } } assert(p.n_threads > 0 && "Invalid # of threads!"); return p; } /** * @brief Main of the Host Application. */ int main(int argc, char **argv) { struct Params p = input_params(argc, argv); unsigned int i = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * p.n_threads : p.input_size; assert(input_size % (p.n_threads) == 0 && "Input size!"); // Input/output allocation #if NUMA if (p.bitmask_in) { numa_set_membind(p.bitmask_in); numa_free_nodemask(p.bitmask_in); } A = (T*) numa_alloc(input_size * sizeof(T)); #else A = (T*)malloc(input_size * sizeof(T)); #endif #if NUMA if (p.bitmask_out) { numa_set_membind(p.bitmask_out); numa_free_nodemask(p.bitmask_out); } C = (T*) numa_alloc(input_size * sizeof(T)); #else C = (T*) malloc(input_size * sizeof(T)); #endif // Create an input file with arbitrary data. read_input(A, input_size); #if NUMA struct bitmask *bitmask_all = numa_allocate_nodemask(); numa_bitmask_setall(bitmask_all); numa_set_membind(bitmask_all); numa_free_nodemask(bitmask_all); #endif #if NUMA mp_pages[0] = A; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_in = mp_status[0]; } mp_pages[0] = C; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(C)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_out = mp_status[0]; } numa_node_cpu = p.numa_node_cpu; if (numa_node_cpu != -1) { if (numa_run_on_node(numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } #endif // Timer declaration Timer timer; thrust::omp::vector h_output(input_size); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, 0); scan_host(C, A, input_size); if(rep >= p.n_warmup) stop(&timer, 0); memcpy(thrust::raw_pointer_cast(&h_output[0]), A, input_size * sizeof(T)); omp_set_num_threads(p.n_threads); unsigned int nr_threads = 0; #pragma omp parallel #pragma omp atomic nr_threads++; if(rep >= p.n_warmup) start(&timer, 1, 0); thrust::exclusive_scan(thrust::omp::par, h_output.begin(),h_output.end(),h_output.begin()); if(rep >= p.n_warmup) stop(&timer, 1); // Check output bool status = true; for (i = 0; i < input_size; i++) { if(C[i] != h_output[i]){ status = false; //printf("%d: %lu -- %lu\n", i, C[i], h_output[i]); } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); if(rep >= p.n_warmup) { printf("[::] SCAN-RSS-CPU | n_threads=%d e_type=%s n_elements=%d" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" #endif " | throughput_cpu_ref_MBps=%f throughput_MBps=%f", nr_threads, XSTR(T), input_size, #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), #endif input_size * sizeof(T) / timer.time[0], input_size * sizeof(T) / timer.time[1]); printf(" throughput_cpu_ref_MOpps=%f throughput_MOpps=%f", input_size / timer.time[0], input_size / timer.time[1]); printall(&timer, 1); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } // Print timing results //printf("CPU "); //print(&timer, 0, p.n_reps); //printf("Kernel "); //print(&timer, 1, p.n_reps); // Deallocation #if NUMA numa_free(A, input_size * sizeof(T)); numa_free(C, input_size * sizeof(T)); #else free(A); free(C); #endif return 0; }