/** * app.c * SCAN-SSA Host Application Source File * */ #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" #define XSTR(x) STR(x) #define STR(x) #x #define NR_DPUS 1 extern int omp_get_num_threads(); // Pointer declaration static T* A; static T* C; static T* C2; // Create input arrays static void read_input(T* A, unsigned int nr_elements, unsigned int nr_elements_round) { srand(0); printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); } for (unsigned int i = nr_elements; i < nr_elements_round; i++) { A[i] = 0; } } // Compute output in the host (slow reference implementation) static void scan_host(T* C, T* A, unsigned int nr_elements) { C[0] = A[0]; for (unsigned int i = 1; i < nr_elements; i++) { C[i] = C[i - 1] + A[i]; } } // Compute output in the host (OMP implementation) static void scan_omp(T* C, T* A, unsigned int nr_elements, unsigned int nr_threads) { unsigned int i; unsigned int elem_per_block = nr_elements / nr_threads; T accum = 0; T tmp[nr_threads]; // parallel block-wise scan #pragma omp parallel for for (i=0; i < nr_threads; i++) { unsigned int start_index = elem_per_block * i; unsigned int stop_index = start_index + elem_per_block; C[start_index] = A[start_index]; for (unsigned int j = start_index + 1; j < stop_index; j++) { C[j] = C[j - 1] + A[j]; } } // sequential scan tmp[0] = 0; for (i=1; i < nr_threads; i++) { unsigned int start_index = elem_per_block * i; accum += C[start_index-1]; tmp[i] = accum; } // parallel block-wise add #pragma omp parallel for for (i=0; i < nr_threads; i++) { unsigned int start_index = elem_per_block * i; unsigned int stop_index = start_index + elem_per_block; for (unsigned int j = start_index; j < stop_index; j++) { C[j] += tmp[i]; } } } /* * "SCAN" := [a1, a1, ..., an] -> [a1, a1 + a2, ..., a1 + a2 + ... + an] * From the paper: * SCAN-SSA has three steps: * * (copy data to the DPU) (timer 1) * * compute the partial scan operation locally inside each DPU (timer 2) * * retrieve last element of each local scan from the DPUs, do a local (complete) scan on the last elements, and push them to the next DPU (timer 3) * * finish the scan operation in each DPU (add sum [a1 ... ax] to a(x+1), ..., a(x+m) for DPU size m) (timer 4) * * (retrieve results from DPU) (timer 5) */ // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); unsigned int i = 0; unsigned int nr_threads = 0; #pragma omp parallel #pragma omp atomic nr_threads++; const unsigned int input_size = p.input_size * nr_threads; // Total input size (weak or strong scaling) // Input/output allocation A = malloc(input_size * sizeof(T)); C = malloc(input_size * sizeof(T)); C2 = malloc(input_size * sizeof(T)); T *bufferC = C2; // Create an input file with arbitrary data read_input(A, input_size, input_size); // Timer declaration Timer timer; // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, 0); scan_host(C, A, input_size); if(rep >= p.n_warmup) stop(&timer, 0); // Compute output on CPU (OMP) if(rep >= p.n_warmup) start(&timer, 1, 0); scan_omp(C2, A, input_size, nr_threads); if(rep >= p.n_warmup) stop(&timer, 1); // Check output bool status = true; for (i = 0; i < input_size; i++) { if(C[i] != bufferC[i]){ status = false; #if PRINT printf("%d: %lu -- %lu\n", i, C[i], bufferC[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); printf("[::] n_threads=%d e_type=%s n_elements=%d " "| throughput_cpu_ref_MBps=%f throughput_cpu_omp_MBps=%f\n", nr_threads, XSTR(T), input_size, input_size * sizeof(T) / timer.time[0], input_size * sizeof(T) / timer.time[1]); printf("[::] n_threads=%d e_type=%s n_elements=%d " "| throughput_cpu_ref_MOpps=%f throughput_cpu_omp_MOpps=%f\n", nr_threads, XSTR(T), input_size, input_size / timer.time[0], input_size / timer.time[1]); printf("[::] n_threads=%d e_type=%s n_elements=%d | ", nr_threads, XSTR(T), input_size); printall(&timer, 1); } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } /* // Print timing results printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU "); print(&timer, 1, p.n_reps); printf("DPU Kernel Scan "); print(&timer, 2, p.n_reps); printf("Inter-DPU (Scan) "); print(&timer, 3, p.n_reps); printf("DPU Kernel Add "); print(&timer, 4, p.n_reps); printf("DPU-CPU "); print(&timer, 5, p.n_reps); printf("\n"); */ #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A); free(C); free(C2); return 0; }