/** * app.c * TRNS Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" #define XSTR(x) STR(x) #define STR(x) #x // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #if ENERGY #include #endif // Pointer declaration static T* A_host; static T* A_backup; static T* A_result; // Create input arrays static void read_input(T* A, unsigned int nr_elements) { srand(0); printf("nr_elements\t%u\t", nr_elements); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); } } // Compute output in the host static void trns_host(T* input, unsigned int A, unsigned int B, unsigned int b){ T* output = (T*) malloc(sizeof(T) * A * B * b); unsigned int next; for (unsigned int j = 0; j < b; j++){ for (unsigned int i = 0; i < A * B; i++){ next = (i * A) - (A * B - 1) * (i / B); output[next * b + j] = input[i*b+j]; } } for (unsigned int k = 0; k < A * B * b; k++){ input[k] = output[k]; } free(output); } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif unsigned int i = 0; unsigned int N_ = p.N_; const unsigned int n = p.n; const unsigned int M_ = p.M_; const unsigned int m = p.m; N_ = p.exp == 0 ? N_ * NR_DPUS : N_; // Input/output allocation A_host = malloc(M_ * m * N_ * n * sizeof(T)); A_backup = malloc(M_ * m * N_ * n * sizeof(T)); A_result = malloc(M_ * m * N_ * n * sizeof(T)); T* done_host = malloc(M_ * n); // Host array to reset done array of step 3 memset(done_host, 0, M_ * n); // Create an input file with arbitrary data read_input(A_host, M_ * m * N_ * n); memcpy(A_backup, A_host, M_ * m * N_ * n * sizeof(T)); // Timer declaration Timer timer; printf("NR_TASKLETS\t%d\n", NR_TASKLETS); printf("M_\t%u, m\t%u, N_\t%u, n\t%u\n", M_, m, N_, n); // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) memcpy(A_host, A_backup, M_ * m * N_ * n * sizeof(T)); if(rep >= p.n_warmup) start(&timer, 0, 0); trns_host(A_host, M_ * m, N_ * n, 1); if(rep >= p.n_warmup) stop(&timer, 0); unsigned int curr_dpu = 0; unsigned int active_dpus; unsigned int active_dpus_before = 0; unsigned int first_round = 1; while(curr_dpu < N_){ // Allocate DPUs and load binary if((N_ - curr_dpu) > NR_DPUS){ active_dpus = NR_DPUS; } else { active_dpus = (N_ - curr_dpu); } if((active_dpus_before != active_dpus) && (!(first_round))){ DPU_ASSERT(dpu_free(dpu_set)); DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); printf("Allocated %d DPU(s)\n", nr_of_dpus); } else if (first_round){ DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); printf("Allocated %d DPU(s)\n", nr_of_dpus); } printf("Load input data (step 1)\n"); if(rep >= p.n_warmup) start(&timer, 1, 0); // Load input matrix (step 1) for(unsigned int j = 0; j < M_ * m; j++){ unsigned int i = 0; DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, &A_backup[j * N_ * n + n * (i + curr_dpu)])); i++; } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, sizeof(T) * j * n, sizeof(T) * n, DPU_XFER_DEFAULT)); } if(rep >= p.n_warmup) stop(&timer, 1); // Reset done array (for step 3) DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, done_host)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, M_ * m * n * sizeof(T), (M_ * n) / 8 == 0 ? 8 : M_ * n, DPU_XFER_DEFAULT)); unsigned int kernel = 0; dpu_arguments_t input_arguments = {m, n, M_, kernel}; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT)); printf("Run step 2 on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup){ start(&timer, 2, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup){ stop(&timer, 2); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif kernel = 1; dpu_arguments_t input_arguments2 = {m, n, M_, kernel}; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments2)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments2), DPU_XFER_DEFAULT)); printf("Run step 3 on DPU(s) \n"); // Run DPU kernel if(rep >= p.n_warmup){ start(&timer, 3, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup){ stop(&timer, 3); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif printf("Retrieve results\n"); if(rep >= p.n_warmup) start(&timer, 4, 0); DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, (T*)(&A_result[curr_dpu * m * n * M_]))); curr_dpu++; } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, sizeof(T) * m * n * M_, DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) stop(&timer, 4); if(first_round){ first_round = 0; } } DPU_ASSERT(dpu_free(dpu_set)); // Check output bool status = true; for (i = 0; i < M_ * m * N_ * n; i++) { if(A_host[i] != A_result[i]){ status = false; #if PRINT printf("%d: %lu -- %lu\n", i, A_host[i], A_result[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); unsigned long input_size = M_ * m * N_ * n; if (rep >= p.n_warmup) { printf("[::] TRNS NMC | n_dpus=%d n_tasklets=%d e_type=%s n_elements=%lu " "| throughput_cpu_MBps=%f throughput_pim_MBps=%f throughput_MBps=%f", nr_of_dpus, NR_TASKLETS, XSTR(T), input_size, input_size * sizeof(T) / timer.time[0], input_size * sizeof(T) / (timer.time[2] + timer.time[3]), input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4])); printf(" throughput_cpu_MOpps=%f throughput_pim_MOpps=%f throughput_MOpps=%f", input_size / timer.time[0], input_size / (timer.time[2] + timer.time[3]), input_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4])); printall(&timer, 4); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } // Print timing results printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU (Step 1) "); print(&timer, 1, p.n_reps); printf("Step 2 "); print(&timer, 2, p.n_reps); printf("Step 3 "); print(&timer, 3, p.n_reps); printf("DPU-CPU "); print(&timer, 4, p.n_reps); #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A_host); free(A_backup); free(A_result); free(done_host); return 0; }