/** * app.c * TRNS Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" #define XSTR(x) STR(x) #define STR(x) #x // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #if ENERGY #include #endif #include #include // Pointer declaration static T* A_host; static T* A_backup; static T* A_result; // Create input arrays static void read_input(T* A, unsigned int nr_elements) { srand(0); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); } } // Compute output in the host static void trns_host(T* input, unsigned int A, unsigned int B, unsigned int b){ T* output = (T*) malloc(sizeof(T) * A * B * b); unsigned int next; for (unsigned int j = 0; j < b; j++){ for (unsigned int i = 0; i < A * B; i++){ next = (i * A) - (A * B - 1) * (i / B); output[next * b + j] = input[i*b+j]; } } for (unsigned int k = 0; k < A * B * b; k++){ input[k] = output[k]; } free(output); } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif unsigned int i = 0; unsigned int N_ = p.N_; const unsigned int n = p.n; const unsigned int M_ = p.M_; const unsigned int m = p.m; N_ = p.exp == 0 ? N_ * NR_DPUS : N_; // Input/output allocation A_host = malloc(M_ * m * N_ * n * sizeof(T)); A_backup = malloc(M_ * m * N_ * n * sizeof(T)); A_result = malloc(M_ * m * N_ * n * sizeof(T)); T* done_host = malloc(M_ * n); // Host array to reset done array of step 3 memset(done_host, 0, M_ * n); // Create an input file with arbitrary data read_input(A_host, M_ * m * N_ * n); memcpy(A_backup, A_host, M_ * m * N_ * n * sizeof(T)); // Timer declaration Timer timer; int numa_node_rank = -2; // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) memcpy(A_host, A_backup, M_ * m * N_ * n * sizeof(T)); if(rep >= p.n_warmup) start(&timer, 0, 0); trns_host(A_host, M_ * m, N_ * n, 1); if(rep >= p.n_warmup) stop(&timer, 0); unsigned int curr_dpu = 0; unsigned int active_dpus; unsigned int active_dpus_before = 0; unsigned int first_round = 1; while(curr_dpu < N_){ // Allocate DPUs and load binary if((N_ - curr_dpu) > NR_DPUS){ active_dpus = NR_DPUS; } else { active_dpus = (N_ - curr_dpu); } if((active_dpus_before != active_dpus) && (!(first_round))){ start(&timer, 1, 1); DPU_ASSERT(dpu_free(dpu_set)); DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set)); stop(&timer, 1); start(&timer, 2, 1); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); stop(&timer, 2); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); } else if (first_round){ start(&timer, 1, 0); DPU_ASSERT(dpu_alloc(active_dpus, NULL, &dpu_set)); stop(&timer, 1); start(&timer, 2, 0); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); stop(&timer, 2); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); } if(rep >= p.n_warmup) { start(&timer, 3, !first_round); } // Load input matrix (step 1) for(unsigned int j = 0; j < M_ * m; j++){ unsigned int i = 0; DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, &A_backup[j * N_ * n + n * (i + curr_dpu)])); i++; } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, sizeof(T) * j * n, sizeof(T) * n, DPU_XFER_DEFAULT)); } if(rep >= p.n_warmup) { stop(&timer, 3); } // Reset done array (for step 3) if(rep >= p.n_warmup) { start(&timer, 4, !first_round); } DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, done_host)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, M_ * m * n * sizeof(T), (M_ * n) / 8 == 0 ? 8 : M_ * n, DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) { stop(&timer, 4); } if(rep >= p.n_warmup) { start(&timer, 5, !first_round); } unsigned int kernel = 0; dpu_arguments_t input_arguments = {m, n, M_, kernel}; // transfer control instructions to DPUs (run first program part) DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments), DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) { stop(&timer, 5); } // Run DPU kernel if(rep >= p.n_warmup){ start(&timer, 6, !first_round); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup){ stop(&timer, 6); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif // transfer control instructions to DPUs (run second program part) if(rep >= p.n_warmup) { start(&timer, 7, !first_round); } kernel = 1; dpu_arguments_t input_arguments2 = {m, n, M_, kernel}; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments2)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments2), DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) { stop(&timer, 7); } // Run DPU kernel if(rep >= p.n_warmup){ start(&timer, 8, !first_round); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup){ stop(&timer, 8); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif if(rep >= p.n_warmup) { start(&timer, 9, !first_round); } DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_prepare_xfer(dpu, (T*)(&A_result[curr_dpu * m * n * M_]))); curr_dpu++; } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, sizeof(T) * m * n * M_, DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) { stop(&timer, 9); } if(first_round){ first_round = 0; } } // int prev_rank_id = -1; int rank_id = -1; DPU_FOREACH (dpu_set, dpu) { rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu)))) { numa_node_rank = -1; } else { numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank(dpu_from_set(dpu))); } /* if (rank_id != prev_rank_id) { printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank); prev_rank_id = rank_id; } */ } start(&timer, 1, 1); DPU_ASSERT(dpu_free(dpu_set)); stop(&timer, 1); // Check output bool status = true; for (i = 0; i < M_ * m * N_ * n; i++) { if(A_host[i] != A_result[i]){ status = false; #if PRINT printf("%d: %lu -- %lu\n", i, A_host[i], A_result[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); unsigned long input_size = M_ * m * N_ * n; if (rep >= p.n_warmup) { /* * timer 0: CPU version * timer 1: realloc (dpu_free, dpu_alloc) * timer 2: dpu_load * timer 3: write input matrix (step 1) * timer 4: write zeroed 'done' array (for step 3) * timer 5: write control instructions (run first kernel) * timer 6: run DPU program (first kernel) * timer 7: write control instructions (run second kernel) * timer 8: run DPU program (second kernel) * timer 9: read transposed matrix */ printf("[::] TRNS-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s n_elements=%lu numa_node_rank=%d ", NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(T), input_size, numa_node_rank); printf("| latency_cpu_us=%f latency_realloc_us=%f latency_load_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f", timer.time[0], // CPU timer.time[1], // free + alloc timer.time[2], // load timer.time[3] + timer.time[4] + timer.time[5] + timer.time[7], // write timer.time[6] + timer.time[8], // kernel timer.time[9]); // read printf(" latency_write1_us=%f latency_write2_us=%f latency_write3_us=%f latency_write4_us=%f latency_kernel1_us=%f latency_kernel2_us=%f", timer.time[3], timer.time[4], timer.time[5], timer.time[7], timer.time[6], timer.time[8]); printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f", input_size * sizeof(T) / timer.time[0], input_size * sizeof(T) / (timer.time[6] + timer.time[8]), input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9])); printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f", input_size * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]), input_size * sizeof(T) / (timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]), input_size * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9])); printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f", input_size / timer.time[0], input_size / (timer.time[6] + timer.time[8]), input_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9])); printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n", input_size / (timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]), input_size / (timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9]), input_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6] + timer.time[7] + timer.time[8] + timer.time[9])); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A_host); free(A_backup); free(A_result); free(done_host); return 0; }