/*++++++++ Written by Yan Zhu, Jan 2018. This is SCRIMP++. Details of the SCRIMP++ algorithm can be found at: Yan Zhu, Chin-Chia M.Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh, "Solving Time Series Data Mining Problems at Scale with SCRIMP++", submitted to KDD 2018. Usage: >> scrimpplusplus InputFileName SubsequenceLength stepsize InputFileName: Name of the time series file SubsequenceLength: Subsequence length m stepsize: Step size ratio s/m. For all the experiments in the paper, stepsize is always set as 0.25. example input: >> scrimpplusplus ts_1000.txt 50 0.25 example output: The code will generate two outputs. SCRIMP_PLUS_PLUS_New_PreSCRIMP_MatrixProfile_and_Index_50_ts_1000.txt This is the approximate matrix profile and matrix profile index generated after PreSCRIMP. SCRIMP_PLUS_PLUS_New_MatrixProfile_and_Index_50_ts_1000.txt This is the final/exact matrix profile and matrix profile index, generated when the whole algorithm (PreSCRIMP+SCRIMP) is completed. The first column of the output file is the matrix profile value. The second column of the output file is the matrix profile index. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mprofile.h" bool interrupt = false; int numThreads, exclusionZone; int windowSize, timeSeriesLength, ProfileLength; int* profileIndex, *profileIndex_tmp; DTYPE *AMean, *ASigma, *profile, *profile_tmp; std::vector idx; std::vector A; void intHandler(int) { std::cout << '\n' << "[>>] Interrupt request by user..." << '\n'; interrupt = true; } void preprocess() { DTYPE* ACumSum = new DTYPE[timeSeriesLength]; DTYPE* ASqCumSum = new DTYPE[timeSeriesLength]; DTYPE* ASum = new DTYPE[ProfileLength]; DTYPE* ASumSq = new DTYPE[ProfileLength]; DTYPE* ASigmaSq = new DTYPE[ProfileLength]; AMean = new DTYPE[ProfileLength]; ASigma = new DTYPE[ProfileLength]; ACumSum[0] = A[0]; ASqCumSum[0] = A[0] * A[0]; for (int i = 1; i < timeSeriesLength; i++) { ACumSum[i] = A[i] + ACumSum[i - 1]; ASqCumSum[i] = A[i] * A[i] + ASqCumSum[i - 1]; } ASum[0] = ACumSum[windowSize - 1]; ASumSq[0] = ASqCumSum[windowSize - 1]; for (int i = 0; i < timeSeriesLength - windowSize; i++) { ASum[i + 1] = ACumSum[windowSize + i] - ACumSum[i]; ASumSq[i + 1] = ASqCumSum[windowSize + i] - ASqCumSum[i]; } for (int i = 0; i < ProfileLength; i++) { AMean[i] = ASum[i]/ windowSize; ASigmaSq[i] = ASumSq[i] / windowSize - AMean[i] * AMean[i]; ASigma[i] = sqrt(ASigmaSq[i]); } delete ACumSum; delete ASqCumSum; delete ASum; delete ASumSq; delete ASigmaSq; } void streamp() { #pragma omp parallel { DTYPE lastz, distance, windowSizeDTYPE; DTYPE * distances, * lastzs; int diag, my_offset, i, j, ri; distances = new DTYPE[ARIT_FACT]; lastzs = new DTYPE[ARIT_FACT]; windowSizeDTYPE = (DTYPE) windowSize; my_offset = omp_get_thread_num() * ProfileLength; #pragma omp for schedule(dynamic) for (ri = 0; ri < idx.size(); ri++) { //select a diagonal if(!interrupt){ diag = idx[ri]; lastz = 0; //calculate the dot product of every two time series values that ar diag away #pragma omp simd for (j = diag; j < windowSize + diag; j++) { lastz += A[j] * A[j-diag]; } //j is the column index, i is the row index of the current distance value in the distance matrix j = diag; i = 0; //evaluate the distance based on the dot product distance = 2 * (windowSizeDTYPE - (lastz - windowSizeDTYPE* AMean[j] * AMean[i]) / (ASigma[j] * ASigma[i])); //update matrix profile and matrix profile index if the current distance value is smaller if (distance < profile_tmp[my_offset + j]) { profile_tmp[my_offset + j] = distance; profileIndex_tmp [my_offset+j] = i; } if (distance < profile_tmp[my_offset + i]) { profile_tmp[my_offset + i] = distance; profileIndex_tmp [my_offset + i] = j; } i = 1; j = diag + 1; /*while(j < (ProfileLength - ARIT_FACT)) { #pragma omp simd for(int k = 0; k < ARIT_FACT; k++) { lastzs[k] = (A[k + j + windowSize - 1] * A[k + i + windowSize - 1]) - (A[k + j - 1] * A[k + i - 1]); } lastzs[0] += lastz; #pragma unroll (ARIT_FACT - 1) for(int k = 1; k < ARIT_FACT; k++) { lastzs[k] += lastzs[k-1]; } lastz = lastzs[ARIT_FACT - 1]; #pragma omp simd for(int k = 0; k < ARIT_FACT; k++) { distances[k] = 2 * (windowSizeDTYPE - (lastzs[k] - AMean[k+j] * AMean[k+i] * windowSizeDTYPE) / (ASigma[k+j] * ASigma[k+i])); } #pragma omp simd for(int k = 0; k < ARIT_FACT; k++) { if (distances[k] < profile_tmp[k + my_offset + j]) { profile_tmp[k + my_offset + j] = distances[k]; profileIndex_tmp [k + my_offset+ j] = i + k; } if (distances[k] < profile_tmp[k + my_offset + i]) { profile_tmp[k + my_offset + i] = distances[k]; profileIndex_tmp[k + my_offset + i] = j + k; } } i+=ARIT_FACT; j+=ARIT_FACT; } while(j < ProfileLength) { lastz = lastz + (A[j + windowSize - 1] * A[i + windowSize - 1]) - (A[j - 1] * A[i - 1]); distance = 2 * (windowSizeDTYPE - (lastz - AMean[j] * AMean[i] * windowSizeDTYPE) / (ASigma[j] * ASigma[i])); if (distance < profile_tmp[my_offset + j]) { profile_tmp[my_offset + j] = distance; profileIndex_tmp [my_offset+ j] = i; } if (distance < profile_tmp[my_offset + i]) { profile_tmp[my_offset + i] = distance; profileIndex_tmp[my_offset + i] = j; } i++; j++; }*/ } } delete(lastzs); delete(distances); #pragma omp barrier // Reduce the (partial) result DTYPE min_distance; int min_index; #pragma omp for schedule(static) for (int colum = 0; colum < ProfileLength; colum++) { min_distance = std::numeric_limits::infinity(); min_index = 0; #pragma unroll(256) for(int row = 0; row < numThreads; row++) { if(profile_tmp[colum + (row*ProfileLength)] < min_distance) { min_distance = profile_tmp[colum + (row * ProfileLength)]; min_index = profileIndex_tmp[colum + (row * ProfileLength)]; } } profile[colum] = min_distance; profileIndex[colum] = min_index; } #pragma omp barrier } delete(AMean); delete(ASigma); delete(profile_tmp); delete(profileIndex_tmp); } int main(int argc, char* argv[]) { bool sequentialDiags = false; // Creation of time meassure structures std::chrono::high_resolution_clock::time_point tprogstart, tstart, tend; std::chrono::duration time_elapsed; // Creation of interrupt handler struct sigaction act; act.sa_handler = intHandler; sigaction(SIGINT, &act, NULL); // Set window size windowSize = atoi(argv[2]); // Set the exclusion zone exclusionZone = (int) (windowSize * 0.25); // Set the thread number //numThreads = atoi(argv[3]); //omp_set_num_threads(numThreads); numThreads = omp_get_max_threads(); // Set computational order if(argc > 4) sequentialDiags = (strcmp(argv[4], "-s") == 0); // Display info through console std::cout << std::endl; std::cout << "############################################################" << std::endl; std::cout << "///////////////////////// STREAMP //////////////////////////" << std::endl; std::cout << "############################################################" << std::endl; std::cout << std::endl; std::cout << "[>>] Reading File..." << std::endl; /* Read time series file */ tstart = std::chrono::high_resolution_clock::now(); // tprogstart = tstart; std::stringstream outfilename_num; outfilename_num << windowSize; std::string outfilenamenum = outfilename_num.str(); std::string inputfilename = argv[1]; std::string outfilename = "SCRIMP_PLUS_PLUS_New_MatrixProfile_and_Index_" + outfilenamenum + "_" + inputfilename; loadTimeSeriesFromFile(inputfilename, A, timeSeriesLength); tend = std::chrono::high_resolution_clock::now(); time_elapsed = tend - tstart; std::cout << "[OK] Read File Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; // Set Matrix Profile Length ProfileLength = timeSeriesLength - windowSize + 1; // Display info through console std::cout << std::endl; std::cout << "------------------------------------------------------------" << std::endl; std::cout << "************************** INFO ****************************" << std::endl; std::cout << std::endl; std::cout << " Time series length: " << timeSeriesLength << std::endl; std::cout << " Window size: " << windowSize << std::endl; std::cout << " Exclusion zone: " << exclusionZone << std::endl; std::cout << " Profile length: " << timeSeriesLength << std::endl; std::cout << " Max avail. threads: " << numThreads << std::endl; std::cout << " Sequential order: "; if(sequentialDiags) std::cout << "true" << std::endl; else std::cout << "false" << std::endl; std::cout << std::endl; std::cout << "------------------------------------------------------------" << std::endl; std::cout << std::endl; // Preprocess, statistics, get the mean and standard deviation of every subsequence in the time series std::cout << "[>>] Preprocessing..." << std::endl; tstart = std::chrono::high_resolution_clock::now(); tprogstart = tstart; preprocess(); tend = std::chrono::high_resolution_clock::now(); time_elapsed = tend - tstart; std::cout << "[OK] Preprocess Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; //Initialize Matrix Profile and Matrix Profile Index std::cout << "[>>] Initializing Profile..." << std::endl; tstart = std::chrono::high_resolution_clock::now(); profile = new DTYPE[ProfileLength]; profileIndex = new int[ProfileLength]; profile_tmp = new DTYPE[ProfileLength * numThreads]; profileIndex_tmp = new int[ProfileLength * numThreads]; for (int i=0; i::infinity(); tend = std::chrono::high_resolution_clock::now(); time_elapsed = tend - tstart; std::cout << "[OK] Initialize Profile Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; // Random shuffle the diagonals idx.clear(); for (int i = exclusionZone+1; i < ProfileLength; i++) idx.push_back(i); if(!sequentialDiags) std::random_shuffle(idx.begin(), idx.end()); /******************** SCRIMP ********************/ std::cout << "[>>] Performing STREAMP..." << std::endl; tstart = std::chrono::high_resolution_clock::now(); streamp(); tend = std::chrono::high_resolution_clock::now(); time_elapsed = tend - tstart; std::cout << "[OK] STREAMP Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; // Save profile to file //std::cout << "[>>] Saving Profile..." << std::endl; //tstart = std::chrono::high_resolution_clock::now(); //aveProfileToFile(outfilename.c_str(), profile, profileIndex, timeSeriesLength, windowSize); //tend = std::chrono::high_resolution_clock::now(); //time_elapsed = tend - tstart; // std::cout << "[OK] Save Profile Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; // Calculate total time time_elapsed = tend - tprogstart; std::cout << "[OK] Total Time: " << std::setprecision(std::numeric_limits::digits10 + 2) << time_elapsed.count() << " seconds." << std::endl; std::cout << std::endl; delete profile; delete profileIndex; }