/** * app.c * TS Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include #include #if ENERGY #include #endif #include "params.h" #include "timer.h" // Define the DPU Binary path as DPU_BINARY here #define DPU_BINARY "./bin/ts_dpu" #define XSTR(x) STR(x) #define STR(x) #x #define MAX_DATA_VAL 127 static DTYPE tSeries[1 << 26]; static DTYPE query [1 << 15]; static DTYPE AMean [1 << 26]; static DTYPE ASigma [1 << 26]; static DTYPE minHost; static DTYPE minHostIdx; // Create input arrays static DTYPE *create_test_file(unsigned int ts_elements, unsigned int query_elements) { srand(0); for (uint64_t i = 0; i < ts_elements; i++) { tSeries[i] = i % MAX_DATA_VAL; } for (uint64_t i = 0; i < query_elements; i++) { query[i] = i % MAX_DATA_VAL; } return tSeries; } // Compute output in the host static void streamp(DTYPE* tSeries, DTYPE* AMean, DTYPE* ASigma, int ProfileLength, DTYPE* query, int queryLength, DTYPE queryMean, DTYPE queryStdDeviation) { DTYPE distance; DTYPE dotprod; minHost = INT32_MAX; minHostIdx = 0; for (int subseq = 0; subseq < ProfileLength; subseq++) { dotprod = 0; for(int j = 0; j < queryLength; j++) { dotprod += tSeries[j + subseq] * query[j]; } distance = 2 * (queryLength - (dotprod - queryLength * AMean[subseq] * queryMean) / (ASigma[subseq] * queryStdDeviation)); if(distance < minHost) { minHost = distance; minHostIdx = subseq; } } } static void compute_ts_statistics(unsigned int timeSeriesLength, unsigned int ProfileLength, unsigned int queryLength) { double* ACumSum = malloc(sizeof(double) * timeSeriesLength); ACumSum[0] = tSeries[0]; for (uint64_t i = 1; i < timeSeriesLength; i++) ACumSum[i] = tSeries[i] + ACumSum[i - 1]; double* ASqCumSum = malloc(sizeof(double) * timeSeriesLength); ASqCumSum[0] = tSeries[0] * tSeries[0]; for (uint64_t i = 1; i < timeSeriesLength; i++) ASqCumSum[i] = tSeries[i] * tSeries[i] + ASqCumSum[i - 1]; double* ASum = malloc(sizeof(double) * ProfileLength); ASum[0] = ACumSum[queryLength - 1]; for (uint64_t i = 0; i < timeSeriesLength - queryLength; i++) ASum[i + 1] = ACumSum[queryLength + i] - ACumSum[i]; double* ASumSq = malloc(sizeof(double) * ProfileLength); ASumSq[0] = ASqCumSum[queryLength - 1]; for (uint64_t i = 0; i < timeSeriesLength - queryLength; i++) ASumSq[i + 1] = ASqCumSum[queryLength + i] - ASqCumSum[i]; double * AMean_tmp = malloc(sizeof(double) * ProfileLength); for (uint64_t i = 0; i < ProfileLength; i++) AMean_tmp[i] = ASum[i] / queryLength; double* ASigmaSq = malloc(sizeof(double) * ProfileLength); for (uint64_t i = 0; i < ProfileLength; i++) ASigmaSq[i] = ASumSq[i] / queryLength - AMean[i] * AMean[i]; for (uint64_t i = 0; i < ProfileLength; i++) { ASigma[i] = sqrt(ASigmaSq[i]); AMean[i] = (DTYPE) AMean_tmp[i]; } free(ACumSum); free(ASqCumSum); free(ASum); free(ASumSq); free(ASigmaSq); free(AMean_tmp); } // Main of the Host Application int main(int argc, char **argv) { // Timer declaration Timer timer; struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; // Allocate DPUs and load binary #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); timer.time[0] = 0; // alloc #endif #if !WITH_LOAD_OVERHEAD DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); timer.time[1] = 0; // load #endif #if !WITH_FREE_OVERHEAD timer.time[6] = 0; // free #endif #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif unsigned long int ts_size = p.input_size_n; const unsigned int query_length = p.input_size_m; // Size adjustment if(ts_size % (NR_DPUS * NR_TASKLETS*query_length)) ts_size = ts_size + (NR_DPUS * NR_TASKLETS * query_length - ts_size % (NR_DPUS * NR_TASKLETS*query_length)); // Create an input file with arbitrary data create_test_file(ts_size, query_length); compute_ts_statistics(ts_size, ts_size - query_length, query_length); DTYPE query_mean; double queryMean = 0; for(unsigned i = 0; i < query_length; i++) queryMean += query[i]; queryMean /= (double) query_length; query_mean = (DTYPE) queryMean; DTYPE query_std; double queryStdDeviation; double queryVariance = 0; for(unsigned i = 0; i < query_length; i++) { queryVariance += (query[i] - queryMean) * (query[i] - queryMean); } queryVariance /= (double) query_length; queryStdDeviation = sqrt(queryVariance); query_std = (DTYPE) queryStdDeviation; DTYPE *bufferTS = tSeries; DTYPE *bufferQ = query; DTYPE *bufferAMean = AMean; DTYPE *bufferASigma = ASigma; uint32_t slice_per_dpu = ts_size / NR_DPUS; unsigned int kernel = 0; dpu_arguments_t input_arguments = {ts_size, query_length, query_mean, query_std, slice_per_dpu, 0, kernel}; uint32_t mem_offset; dpu_result_t result; result.minValue = INT32_MAX; result.minIndex = 0; result.maxValue = 0; result.maxIndex = 0; for (int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { #if WITH_ALLOC_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 0, 0); } DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); if(rep >= p.n_warmup) { stop(&timer, 0); } #endif #if WITH_LOAD_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 1, 0); } DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); if(rep >= p.n_warmup) { stop(&timer, 1); } DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); #endif if (rep >= p.n_warmup) { start(&timer, 2, 0); } uint32_t i = 0; DPU_FOREACH(dpu_set, dpu) { input_arguments.exclusion_zone = 0; DPU_ASSERT(dpu_copy_to(dpu, "DPU_INPUT_ARGUMENTS", 0, (const void *) &input_arguments, sizeof(input_arguments))); i++; } i = 0; mem_offset = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferQ)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, query_length * sizeof(DTYPE), DPU_XFER_DEFAULT)); i = 0; mem_offset += query_length * sizeof(DTYPE); DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferTS + slice_per_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, mem_offset,(slice_per_dpu + query_length)*sizeof(DTYPE), DPU_XFER_DEFAULT)); mem_offset += ((slice_per_dpu + query_length) * sizeof(DTYPE)); i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferAMean + slice_per_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, mem_offset, (slice_per_dpu + query_length)*sizeof(DTYPE), DPU_XFER_DEFAULT)); i = 0; mem_offset += ((slice_per_dpu + query_length) * sizeof(DTYPE)); DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferASigma + slice_per_dpu * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, mem_offset, (slice_per_dpu + query_length)*sizeof(DTYPE), DPU_XFER_DEFAULT)); if (rep >= p.n_warmup) { stop(&timer, 2); } // Run kernel on DPUs if (rep >= p.n_warmup) { start(&timer, 3, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if (rep >= p.n_warmup) { stop(&timer, 3); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } dpu_result_t* results_retrieve[NR_DPUS]; if (rep >= p.n_warmup) { start(&timer, 4, 0); } DPU_FOREACH(dpu_set, dpu, i) { results_retrieve[i] = (dpu_result_t*)malloc(NR_TASKLETS * sizeof(dpu_result_t)); } DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, results_retrieve[i])); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, "DPU_RESULTS", 0, NR_TASKLETS * sizeof(dpu_result_t), DPU_XFER_DEFAULT)); i = 0; DPU_FOREACH(dpu_set, dpu, i) { for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) { if(results_retrieve[i][each_tasklet].minValue < result.minValue && results_retrieve[i][each_tasklet].minValue > 0) { result.minValue = results_retrieve[i][each_tasklet].minValue; result.minIndex = (DTYPE)results_retrieve[i][each_tasklet].minIndex + (i * slice_per_dpu); } } free(results_retrieve[i]); i++; } if(rep >= p.n_warmup) { stop(&timer, 4); } #if PRINT printf("LOGS\n"); DPU_FOREACH(dpu_set, dpu) { DPU_ASSERT(dpu_log_read(dpu, stdout)); } #endif #if WITH_ALLOC_OVERHEAD #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { start(&timer, 5, 0); } #endif DPU_ASSERT(dpu_free(dpu_set)); #if WITH_FREE_OVERHEAD if(rep >= p.n_warmup) { stop(&timer, 5); } #endif #endif if (rep >= p.n_warmup) { start(&timer, 6, 0); } streamp(tSeries, AMean, ASigma, ts_size - query_length - 1, query, query_length, query_mean, query_std); if(rep >= p.n_warmup) { stop(&timer, 6); } int status = (minHost == result.minValue); if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] results are equal\n"); if (rep >= p.n_warmup) { printf("[::] TS UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%lu", NR_DPUS, nr_of_ranks, NR_TASKLETS, XSTR(DTYPE), BLOCK_SIZE, ts_size); printf(" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d ", WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD); printf("| latency_alloc_us=%f latency_load_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f latency_cpu_us=%f ", timer.time[0], // alloc timer.time[1], // load timer.time[2], // write timer.time[3], // kernel timer.time[4], // read timer.time[5], // free timer.time[6]); // CPU printf(" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f", ts_size * sizeof(DTYPE) / timer.time[6], ts_size * sizeof(DTYPE) / (timer.time[3]), ts_size * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5])); printf(" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f", ts_size * sizeof(DTYPE) / (timer.time[2] + timer.time[3] + timer.time[4]), ts_size * sizeof(DTYPE) / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4]), ts_size * sizeof(DTYPE) / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4])); printf(" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f", ts_size / timer.time[6], ts_size / (timer.time[3]), ts_size / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4] + timer.time[5])); printf(" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n", ts_size / (timer.time[2] + timer.time[3] + timer.time[4]), ts_size / (timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4]), ts_size / (timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3] + timer.time[4])); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] results differ!\n"); } } #if ENERGY double acc_energy, avg_energy, acc_time, avg_time; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_ACCUMULATE, &acc_energy)); DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &avg_energy)); DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_ACCUMULATE, &acc_time)); DPU_ASSERT(dpu_probe_get(&probe, DPU_TIME, DPU_AVERAGE, &avg_time)); #endif #if ENERGY printf("Energy (J): %f J\t", avg_energy); #endif #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_free(dpu_set)); #endif #if ENERGY DPU_ASSERT(dpu_probe_deinit(&probe)); #endif return 0; }