/** * @file app.c * @brief Template for a Host Application Source File. * */ #include #include #include #include #include #include #include #include #include #include "../../support/timer.h" #if NUMA #include #include void* mp_pages[1]; int mp_status[1]; int mp_nodes[1]; int numa_node_in = -1; int numa_node_out = -1; int numa_node_cpu = -1; #endif #define XSTR(x) STR(x) #define STR(x) #x #ifndef T #define T int32_t #endif static T *A; static T *B; static T *C; #if NUMA_MEMCPY int numa_node_cpu_memcpy = -1; int numa_node_local = -1; int numa_node_in_is_local = 0; static T *A_local; static T *B_local; #endif /** * @brief compute output in the host */ static void vector_addition_host(unsigned int nr_elements, int t) { omp_set_num_threads(t); #pragma omp parallel for for (int i = 0; i < nr_elements; i++) { #if NUMA_MEMCPY C[i] = A_local[i] + B_local[i]; #else C[i] = A[i] + B[i]; #endif } } // Params --------------------------------------------------------------------- typedef struct Params { int input_size; int n_warmup; int n_reps; int exp; int n_threads; #if NUMA struct bitmask* bitmask_in; struct bitmask* bitmask_out; int numa_node_cpu; #endif #if NUMA_MEMCPY int numa_node_cpu_memcpy; struct bitmask* bitmask_cpu; #endif }Params; void usage() { fprintf(stderr, "\nUsage: ./program [options]" "\n" "\nGeneral options:" "\n -h help" "\n -t # of threads (default=8)" "\n -w # of untimed warmup iterations (default=1)" "\n -e # of timed repetition iterations (default=3)" "\n -x Weak (0) or strong (1) scaling (default=0)" "\n" "\nBenchmark-specific options:" "\n -i input size (default=8M elements)" "\n"); } struct Params input_params(int argc, char **argv) { struct Params p; p.input_size = 16777216; p.n_warmup = 1; p.n_reps = 3; p.exp = 1; p.n_threads = 5; #if NUMA p.bitmask_in = NULL; p.bitmask_out = NULL; p.numa_node_cpu = -1; #endif #if NUMA_MEMCPY p.numa_node_cpu_memcpy = -1; p.bitmask_cpu = NULL; #endif int opt; while((opt = getopt(argc, argv, "hi:w:e:x:t:a:b:c:C:M:")) >= 0) { switch(opt) { case 'h': usage(); exit(0); break; case 'i': p.input_size = atoi(optarg); break; case 'w': p.n_warmup = atoi(optarg); break; case 'e': p.n_reps = atoi(optarg); break; case 'x': p.exp = atoi(optarg); break; case 't': p.n_threads = atoi(optarg); break; #if NUMA case 'a': p.bitmask_in = numa_parse_nodestring(optarg); break; case 'b': p.bitmask_out = numa_parse_nodestring(optarg); break; case 'c': p.numa_node_cpu = atoi(optarg); break; #if NUMA_MEMCPY case 'C': p.bitmask_cpu = numa_parse_nodestring(optarg); break; case 'M': p.numa_node_cpu_memcpy = atoi(optarg); break; #endif // NUMA_MEMCPY #endif // NUMA default: fprintf(stderr, "\nUnrecognized option!\n"); usage(); exit(0); } } assert(p.n_threads > 0 && "Invalid # of ranks!"); return p; } /** * @brief Main of the Host Application. */ int main(int argc, char **argv) { struct Params p = input_params(argc, argv); const unsigned int input_size = p.exp == 0 ? p.input_size * p.n_threads : p.input_size; // Create an input file with arbitrary data. /** * @brief creates a "test file" by filling a buffer of 64MB with pseudo-random values * @param nr_elements how many 32-bit elements we want the file to be * @return the buffer address */ srand(0); #if NUMA if (p.bitmask_in) { numa_set_membind(p.bitmask_in); numa_free_nodemask(p.bitmask_in); } A = (T*) numa_alloc(input_size * sizeof(T)); B = (T*) numa_alloc(input_size * sizeof(T)); #else A = (T*) malloc(input_size * sizeof(T)); B = (T*) malloc(input_size * sizeof(T)); #endif #if NUMA if (p.bitmask_out) { numa_set_membind(p.bitmask_out); numa_free_nodemask(p.bitmask_out); } C = (T*) numa_alloc(input_size * sizeof(T)); #else C = (T*) malloc(input_size * sizeof(T)); #endif for (unsigned int i = 0; i < input_size; i++) { A[i] = (T) (rand()); B[i] = (T) (rand()); } #if NUMA #if NUMA_MEMCPY if (p.bitmask_cpu) { numa_set_membind(p.bitmask_cpu); numa_free_nodemask(p.bitmask_cpu); } #else struct bitmask *bitmask_all = numa_allocate_nodemask(); numa_bitmask_setall(bitmask_all); numa_set_membind(bitmask_all); numa_free_nodemask(bitmask_all); #endif // NUMA_MEMCPY #endif // NUMA #if NUMA mp_pages[0] = A; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_in = mp_status[0]; } mp_pages[0] = C; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(C)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_out = mp_status[0]; } numa_node_cpu = p.numa_node_cpu; if (p.numa_node_cpu != -1) { if (numa_run_on_node(p.numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } #endif #if NUMA_MEMCPY numa_node_in_is_local = ((numa_node_cpu == numa_node_in) || (numa_node_cpu + 8 == numa_node_in)) * 1; #endif Timer timer; for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { #if NUMA_MEMCPY numa_node_cpu_memcpy = p.numa_node_cpu_memcpy; start(&timer, 1, 0); if (!numa_node_in_is_local) { A_local = (T*) numa_alloc(input_size * sizeof(T)); B_local = (T*) numa_alloc(input_size * sizeof(T)); } stop(&timer, 1); if (!numa_node_in_is_local) { if (p.numa_node_cpu_memcpy != -1) { if (numa_run_on_node(p.numa_node_cpu_memcpy) == -1) { perror("numa_run_on_node"); numa_node_cpu_memcpy = -1; } } } start(&timer, 2, 0); if (!numa_node_in_is_local) { memcpy(A_local, A, input_size * sizeof(T)); memcpy(B_local, B, input_size * sizeof(T)); } else { A_local = A; B_local = B; } stop(&timer, 2); if (p.numa_node_cpu != -1) { if (numa_run_on_node(p.numa_node_cpu) == -1) { perror("numa_run_on_node"); numa_node_cpu = -1; } } mp_pages[0] = A_local; if (move_pages(0, 1, mp_pages, NULL, mp_status, 0) == -1) { perror("move_pages(A_local)"); } else if (mp_status[0] < 0) { printf("move_pages error: %d", mp_status[0]); } else { numa_node_local = mp_status[0]; } #endif start(&timer, 0, 0); vector_addition_host(input_size, p.n_threads); stop(&timer, 0); #if NUMA_MEMCPY start(&timer, 3, 0); if (!numa_node_in_is_local) { numa_free(A_local, input_size * sizeof(T)); numa_free(B_local, input_size * sizeof(T)); } stop(&timer, 3); #endif unsigned int nr_threads = 0; #pragma omp parallel #pragma omp atomic nr_threads++; if (rep >= p.n_warmup) { #if NUMA_MEMCPY printf("[::] VA-CPU-MEMCPY | n_threads=%d e_type=%s n_elements=%d" " numa_node_in=%d numa_node_local=%d numa_node_out=%d numa_node_cpu=%d numa_node_cpu_memcpy=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" " | throughput_MBps=%f", nr_threads, XSTR(T), input_size, numa_node_in, numa_node_local, numa_node_out, numa_node_cpu, numa_node_cpu_memcpy, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), input_size * 3 * sizeof(T) / timer.time[0]); printf(" throughput_MOpps=%f", input_size / timer.time[0]); printf(" latency_kernel_us=%f latency_alloc_us=%f latency_memcpy_us=%f latency_free_us=%f latency_total_us=%f\n", timer.time[0], timer.time[1], timer.time[2], timer.time[3], timer.time[0] + timer.time[1] + timer.time[2] + timer.time[3]); #else printf("[::] VA-CPU | n_threads=%d e_type=%s n_elements=%d" #if NUMA " numa_node_in=%d numa_node_out=%d numa_node_cpu=%d numa_distance_in_cpu=%d numa_distance_cpu_out=%d" #endif " | throughput_MBps=%f", nr_threads, XSTR(T), input_size, #if NUMA numa_node_in, numa_node_out, numa_node_cpu, numa_distance(numa_node_in, numa_node_cpu), numa_distance(numa_node_cpu, numa_node_out), #endif input_size * 3 * sizeof(T) / timer.time[0]); printf(" throughput_MOpps=%f", input_size / timer.time[0]); printf(" latency_us=%f\n", timer.time[0]); #endif // NUMA_MEMCPY } } #if NUMA numa_free(A, input_size * sizeof(T)); numa_free(B, input_size * sizeof(T)); numa_free(C, input_size * sizeof(T)); #else free(A); free(B); free(C); #endif return 0; }