/** * app.c * VA Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x #if ENERGY #include #endif // Pointer declaration static T* A; static T* B; static T* C; static T* C2; // Create input arrays static void read_input(T* A, T* B, unsigned int nr_elements) { srand(0); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = (T) (rand()); } } // Compute output in the host static void vector_addition_host(T* C, T* A, T* B, unsigned int nr_elements) { for (unsigned int i = 0; i < nr_elements; i++) { C[i] = A[i] + B[i]; } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif // Allocate DPUs and load binary DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); printf("Allocated %d DPU(s)\n", nr_of_dpus); unsigned int i = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size; const unsigned int input_size_8bytes = ((input_size * sizeof(T)) % 8) != 0 ? roundup(input_size, 8) : input_size; // Input size per DPU (max.), 8-byte aligned const unsigned int input_size_dpu = divceil(input_size, nr_of_dpus); // Input size per DPU (max.) const unsigned int input_size_dpu_8bytes = ((input_size_dpu * sizeof(T)) % 8) != 0 ? roundup(input_size_dpu, 8) : input_size_dpu; // Input size per DPU (max.), 8-byte aligned // Input/output allocation A = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); B = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); C = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); C2 = malloc(input_size_dpu_8bytes * nr_of_dpus * sizeof(T)); T *bufferA = A; T *bufferB = B; T *bufferC = C2; // Create an input file with arbitrary data read_input(A, B, input_size); // Timer declaration Timer timer; // Loop over main kernel for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { // Compute output on CPU (performance comparison and verification purposes) if(rep >= p.n_warmup) start(&timer, 0, 0); vector_addition_host(C, A, B, input_size); if(rep >= p.n_warmup) stop(&timer, 0); if(rep >= p.n_warmup) start(&timer, 1, 0); // Input arguments unsigned int kernel = 0; dpu_arguments_t input_arguments[NR_DPUS]; for(i=0; i= p.n_warmup) stop(&timer, 1); // Run DPU kernel if(rep >= p.n_warmup) { start(&timer, 2, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if(rep >= p.n_warmup) { stop(&timer, 2); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH (dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout)); each_dpu++; } } #endif if(rep >= p.n_warmup) start(&timer, 3, 0); i = 0; // PARALLEL RETRIEVE TRANSFER DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, bufferC + input_size_dpu_8bytes * i)); } DPU_ASSERT(dpu_push_xfer(dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu_8bytes * sizeof(T), input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT)); if(rep >= p.n_warmup) stop(&timer, 3); // Check output bool status = true; for (i = 0; i < input_size; i++) { if(C[i] != bufferC[i]){ status = false; #if PRINT printf("%d: %u -- %u\n", i, C[i], bufferC[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); if (rep >= p.n_warmup) { printf("[::] VA NMC | n_dpus=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d " "| throughput_cpu_MBps=%f throughput_pim_MBps=%f throughput_MBps=%f", nr_of_dpus, NR_TASKLETS, XSTR(T), BLOCK_SIZE, input_size, input_size * 3 * sizeof(T) / timer.time[0], input_size * 3 * sizeof(T) / (timer.time[1]), input_size * 3 * sizeof(T) / (timer.time[1] + timer.time[2] + timer.time[3])); printf(" throughput_cpu_MOpps=%f throughput_pim_MOpps=%f throughput_MOpps=%f\n", input_size / timer.time[0], input_size / (timer.time[1]), input_size / (timer.time[1] + timer.time[2] + timer.time[3])); printall(&timer, 3); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } // Print timing results /* printf("CPU "); print(&timer, 0, p.n_reps); printf("CPU-DPU "); print(&timer, 1, p.n_reps); printf("DPU Kernel "); print(&timer, 2, p.n_reps); printf("DPU-CPU "); print(&timer, 3, p.n_reps); */ #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A); free(B); free(C); free(C2); DPU_ASSERT(dpu_free(dpu_set)); return 0; }