/** * app.c * VA Host Application Source File * */ #include #include #include #include #include #include #include #include #include #include "../support/common.h" #include "../support/timer.h" #include "../support/params.h" // Define the DPU Binary path as DPU_BINARY here #ifndef DPU_BINARY #define DPU_BINARY "./bin/dpu_code" #endif #define XSTR(x) STR(x) #define STR(x) #x #if ENERGY #include #endif #include #include // Pointer declaration static T *A; static T *B; static T *C; static T *C2; // Create input arrays static void read_input(T *A, T *B, unsigned int nr_elements) { srand(0); for (unsigned int i = 0; i < nr_elements; i++) { A[i] = (T) (rand()); B[i] = (T) (rand()); } } // Compute output in the host static void vector_addition_host(T *C, T *A, T *B, unsigned int nr_elements) { for (unsigned int i = 0; i < nr_elements; i++) { C[i] = A[i] + B[i]; } } // Main of the Host Application int main(int argc, char **argv) { struct Params p = input_params(argc, argv); struct dpu_set_t dpu_set, dpu; uint32_t nr_of_dpus; uint32_t nr_of_ranks; #if ENERGY struct dpu_probe_t probe; DPU_ASSERT(dpu_probe_init("energy_probe", &probe)); #endif // Timer declaration Timer timer; int numa_node_rank = -2; // Allocate DPUs and load binary #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); timer.time[0] = 0; // alloc #endif #if !WITH_LOAD_OVERHEAD DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); timer.time[1] = 0; // load #endif #if !WITH_FREE_OVERHEAD timer.time[6] = 0; // free #endif unsigned int i = 0; const unsigned int input_size = p.exp == 0 ? p.input_size * NR_DPUS : p.input_size; const unsigned int input_size_8bytes = ((input_size * sizeof(T)) % 8) != 0 ? roundup(input_size, 8) : input_size; // Input size per DPU (max.), 8-byte aligned const unsigned int input_size_dpu = divceil(input_size, NR_DPUS); // Input size per DPU (max.) const unsigned int input_size_dpu_8bytes = ((input_size_dpu * sizeof(T)) % 8) != 0 ? roundup(input_size_dpu, 8) : input_size_dpu; // Input size per DPU (max.), 8-byte aligned // Input/output allocation A = malloc(input_size_dpu_8bytes * NR_DPUS * sizeof(T)); B = malloc(input_size_dpu_8bytes * NR_DPUS * sizeof(T)); C = malloc(input_size_dpu_8bytes * NR_DPUS * sizeof(T)); C2 = malloc(input_size_dpu_8bytes * NR_DPUS * sizeof(T)); T *bufferA = A; T *bufferB = B; T *bufferC = C2; // Create an input file with arbitrary data read_input(A, B, input_size); // Loop over main kernel for (int rep = 0; rep < p.n_warmup + p.n_reps; rep++) { #if WITH_ALLOC_OVERHEAD if (rep >= p.n_warmup) { start(&timer, 0, 0); } DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set)); if (rep >= p.n_warmup) { stop(&timer, 0); } #endif #if WITH_DPUINFO printf("DPUs:"); DPU_FOREACH(dpu_set, dpu) { int rank = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; int slice = dpu_get_slice_id(dpu_from_set(dpu)); int member = dpu_get_member_id(dpu_from_set(dpu)); printf(" %d(%d.%d)", rank, slice, member); } printf("\n"); #endif #if WITH_LOAD_OVERHEAD if (rep >= p.n_warmup) { start(&timer, 1, 0); } DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL)); if (rep >= p.n_warmup) { stop(&timer, 1); } DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus)); DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks)); assert(nr_of_dpus == NR_DPUS); #endif // int prev_rank_id = -1; int rank_id = -1; DPU_FOREACH(dpu_set, dpu) { rank_id = dpu_get_rank_id(dpu_get_rank(dpu_from_set(dpu))) & DPU_TARGET_MASK; if ((numa_node_rank != -2) && numa_node_rank != dpu_get_rank_numa_node(dpu_get_rank (dpu_from_set(dpu)))) { numa_node_rank = -1; } else { numa_node_rank = dpu_get_rank_numa_node(dpu_get_rank (dpu_from_set(dpu))); } /* if (rank_id != prev_rank_id) { printf("/dev/dpu_rank%d @ NUMA node %d\n", rank_id, numa_node_rank); prev_rank_id = rank_id; } */ } // Compute output on CPU (performance comparison and verification purposes) if (rep >= p.n_warmup) { start(&timer, 2, 0); } vector_addition_host(C, A, B, input_size); if (rep >= p.n_warmup) { stop(&timer, 2); } if (rep >= p.n_warmup) { start(&timer, 3, 0); } // Input arguments unsigned int kernel = 0; dpu_arguments_t input_arguments[NR_DPUS]; for (i = 0; i < nr_of_dpus - 1; i++) { input_arguments[i].size = input_size_dpu_8bytes * sizeof(T); input_arguments[i].transfer_size = input_size_dpu_8bytes * sizeof(T); input_arguments[i].kernel = kernel; } input_arguments[nr_of_dpus - 1].size = (input_size_8bytes - input_size_dpu_8bytes * (NR_DPUS - 1)) * sizeof(T); input_arguments[nr_of_dpus - 1].transfer_size = input_size_dpu_8bytes * sizeof(T); input_arguments[nr_of_dpus - 1].kernel = kernel; // Copy input arrays i = 0; DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer(dpu, &input_arguments[i])); } DPU_ASSERT(dpu_push_xfer (dpu_set, DPU_XFER_TO_DPU, "DPU_INPUT_ARGUMENTS", 0, sizeof(input_arguments[0]), DPU_XFER_DEFAULT)); DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer (dpu, bufferA + input_size_dpu_8bytes * i)); } DPU_ASSERT(dpu_push_xfer (dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, 0, input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT)); DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer (dpu, bufferB + input_size_dpu_8bytes * i)); } DPU_ASSERT(dpu_push_xfer (dpu_set, DPU_XFER_TO_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu_8bytes * sizeof(T), input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT)); if (rep >= p.n_warmup) { stop(&timer, 3); } // Run DPU kernel if (rep >= p.n_warmup) { start(&timer, 4, 0); #if ENERGY DPU_ASSERT(dpu_probe_start(&probe)); #endif } DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS)); if (rep >= p.n_warmup) { stop(&timer, 4); #if ENERGY DPU_ASSERT(dpu_probe_stop(&probe)); #endif } #if PRINT { unsigned int each_dpu = 0; printf("Display DPU Logs\n"); DPU_FOREACH(dpu_set, dpu) { printf("DPU#%d:\n", each_dpu); DPU_ASSERT(dpulog_read_for_dpu (dpu.dpu, stdout)); each_dpu++; } } #endif if (rep >= p.n_warmup) { start(&timer, 5, 0); } i = 0; // PARALLEL RETRIEVE TRANSFER DPU_FOREACH(dpu_set, dpu, i) { DPU_ASSERT(dpu_prepare_xfer (dpu, bufferC + input_size_dpu_8bytes * i)); } DPU_ASSERT(dpu_push_xfer (dpu_set, DPU_XFER_FROM_DPU, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu_8bytes * sizeof(T), input_size_dpu_8bytes * sizeof(T), DPU_XFER_DEFAULT)); if (rep >= p.n_warmup) { stop(&timer, 5); } #if WITH_ALLOC_OVERHEAD #if WITH_FREE_OVERHEAD if (rep >= p.n_warmup) { start(&timer, 6, 0); } #endif DPU_ASSERT(dpu_free(dpu_set)); #if WITH_FREE_OVERHEAD if (rep >= p.n_warmup) { stop(&timer, 6); } #endif #endif // Check output bool status = true; for (i = 0; i < input_size; i++) { if (C[i] != bufferC[i]) { status = false; #if PRINT printf("%d: %u -- %u\n", i, C[i], bufferC[i]); #endif } } if (status) { printf("[" ANSI_COLOR_GREEN "OK" ANSI_COLOR_RESET "] Outputs are equal\n"); if (rep >= p.n_warmup) { printf ("[::] VA-UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s block_size_B=%d n_elements=%d n_elements_per_dpu=%d", nr_of_dpus, nr_of_ranks, NR_TASKLETS, XSTR(T), BLOCK_SIZE, input_size, input_size / NR_DPUS); printf (" b_with_alloc_overhead=%d b_with_load_overhead=%d b_with_free_overhead=%d numa_node_rank=%d ", WITH_ALLOC_OVERHEAD, WITH_LOAD_OVERHEAD, WITH_FREE_OVERHEAD, numa_node_rank); printf ("| latency_alloc_us=%f latency_load_us=%f latency_cpu_us=%f latency_write_us=%f latency_kernel_us=%f latency_read_us=%f latency_free_us=%f", timer.time[0], timer.time[1], timer.time[2], timer.time[3], timer.time[4], timer.time[5], timer.time[6]); printf (" throughput_cpu_MBps=%f throughput_upmem_kernel_MBps=%f throughput_upmem_total_MBps=%f", input_size * 3 * sizeof(T) / timer.time[2], input_size * 3 * sizeof(T) / (timer.time[4]), input_size * 3 * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf (" throughput_upmem_wxr_MBps=%f throughput_upmem_lwxr_MBps=%f throughput_upmem_alwxr_MBps=%f", input_size * 3 * sizeof(T) / (timer.time[3] + timer.time[4] + timer.time[5]), input_size * 3 * sizeof(T) / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), input_size * 3 * sizeof(T) / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); printf (" throughput_cpu_MOpps=%f throughput_upmem_kernel_MOpps=%f throughput_upmem_total_MOpps=%f", input_size / timer.time[2], input_size / (timer.time[4]), input_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5] + timer.time[6])); printf (" throughput_upmem_wxr_MOpps=%f throughput_upmem_lwxr_MOpps=%f throughput_upmem_alwxr_MOpps=%f\n", input_size / (timer.time[3] + timer.time[4] + timer.time[5]), input_size / (timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5]), input_size / (timer.time[0] + timer.time[1] + timer.time[3] + timer.time[4] + timer.time[5])); } } else { printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n"); } } #if ENERGY double energy; DPU_ASSERT(dpu_probe_get(&probe, DPU_ENERGY, DPU_AVERAGE, &energy)); printf("DPU Energy (J): %f\t", energy); #endif // Deallocation free(A); free(B); free(C); free(C2); #if !WITH_ALLOC_OVERHEAD DPU_ASSERT(dpu_free(dpu_set)); #endif return 0; }