1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
/**
* app.c
* MRAM Latency Host Application Source File
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <dpu.h>
#include <dpu_log.h>
#include <unistd.h>
#include <getopt.h>
#include <assert.h>
#include "../support/common.h"
#include "../support/timer.h"
#include "../support/params.h"
// Define the DPU Binary path as DPU_BINARY here
#ifndef DPU_BINARY
#define DPU_BINARY "./bin/dpu_code"
#endif
#define XSTR(x) STR(x)
#define STR(x) #x
// Pointer declaration
static T* A;
static T* B;
static T* C2;
// Create input arrays
static void read_input(T* A, T* B, unsigned int nr_elements) {
srand(0);
for (unsigned int i = 0; i < nr_elements; i++) {
A[i] = (T) (rand());
B[i] = (T) (rand());
}
}
// Compute output in the host
static void stream_host(T* C, T* A, unsigned int nr_elements) {
for (unsigned int i = 0; i < nr_elements; i++) {
C[i] = A[i];
}
}
// Main of the Host Application
int main(int argc, char **argv) {
struct Params p = input_params(argc, argv);
struct dpu_set_t dpu_set, dpu;
uint32_t clocks_per_sec;
uint32_t nr_of_dpus;
uint32_t nr_of_ranks;
// Allocate DPUs and load binary
DPU_ASSERT(dpu_alloc(NR_DPUS, NULL, &dpu_set));
DPU_ASSERT(dpu_load(dpu_set, DPU_BINARY, NULL));
DPU_ASSERT(dpu_get_nr_dpus(dpu_set, &nr_of_dpus));
DPU_ASSERT(dpu_get_nr_ranks(dpu_set, &nr_of_ranks));
unsigned int i = 0;
const unsigned int input_size = p.exp == 0 ? p.input_size * nr_of_dpus : p.input_size;
assert(input_size % (nr_of_dpus * NR_TASKLETS) == 0 && "Input size!");
// Input/output allocation
A = malloc(input_size * sizeof(T));
B = malloc(input_size * sizeof(T));
T *bufferA = A;
T *bufferB = B;
C2 = malloc(input_size * sizeof(T));
// Create an input file with arbitrary data
read_input(A, B, input_size);
// Timer declaration
Timer timer;
// Loop over main kernel
for(int rep = 0; rep < p.n_warmup + p.n_reps; rep++) {
// Compute output on CPU (performance comparison and verification purposes)
if(rep >= p.n_warmup)
start(&timer, 0, rep - p.n_warmup);
stream_host(C2, A, input_size);
if(rep >= p.n_warmup)
stop(&timer, 0);
if(rep >= p.n_warmup)
start(&timer, 1, rep - p.n_warmup);
// Input arguments
const unsigned int input_size_dpu = input_size / nr_of_dpus;
unsigned int kernel = 0;
dpu_arguments_t input_arguments = {input_size_dpu * sizeof(T), kernel};
DPU_ASSERT(dpu_copy_to(dpu_set, "DPU_INPUT_ARGUMENTS", 0, (const void *)&input_arguments, sizeof(input_arguments)));
// Copy input arrays
i = 0;
DPU_FOREACH (dpu_set, dpu) {
DPU_ASSERT(dpu_copy_to(dpu, DPU_MRAM_HEAP_POINTER_NAME, 0, bufferA + input_size_dpu * i, input_size_dpu * sizeof(T)));
i++;
}
if(rep >= p.n_warmup)
stop(&timer, 1);
// Run DPU kernel
if(rep >= p.n_warmup)
start(&timer, 2, rep - p.n_warmup);
DPU_ASSERT(dpu_launch(dpu_set, DPU_SYNCHRONOUS));
if(rep >= p.n_warmup)
stop(&timer, 2);
#if PRINT
{
unsigned int each_dpu = 0;
printf("Display DPU Logs\n");
DPU_FOREACH (dpu_set, dpu) {
printf("DPU#%d:\n", each_dpu);
DPU_ASSERT(dpulog_read_for_dpu(dpu.dpu, stdout));
each_dpu++;
}
}
#endif
if(rep >= p.n_warmup)
start(&timer, 3, rep - p.n_warmup);
i = 0;
DPU_FOREACH (dpu_set, dpu) {
// Copy output array
DPU_ASSERT(dpu_copy_from(dpu, DPU_MRAM_HEAP_POINTER_NAME, input_size_dpu * sizeof(T), bufferB + input_size_dpu * i, input_size_dpu * sizeof(T)));
#if PERF
DPU_ASSERT(dpu_copy_from(dpu, "CLOCKS_PER_SEC", 0, &clocks_per_sec, sizeof(clocks_per_sec)));
// Retrieve tasklet timings
for (unsigned int each_tasklet = 0; each_tasklet < NR_TASKLETS; each_tasklet++) {
dpu_results_t result;
result.count = 0;
result.r_cycles = 0;
result.w_cycles = 0;
DPU_ASSERT(dpu_copy_from(dpu, "DPU_RESULTS", each_tasklet * sizeof(dpu_results_t), &result, sizeof(dpu_results_t)));
printf("[::] DMA UPMEM | n_dpus=%d n_ranks=%d n_tasklets=%d e_type=%s n_elements=%u block_size_B=%d"
" | latency_mram_read_us=%f latency_mram_write_us=%f"
" throughput_dpu_mram_read_MBps=%f throughput_dpu_mram_write_MBps=%f"
" throughput_tasklet_mram_read_MBps=%f throughput_tasklet_mram_write_MBps=%f\n",
nr_of_dpus, nr_of_ranks, NR_TASKLETS, XSTR(T), input_size_dpu, BLOCK_SIZE,
((double)result.r_cycles * 1e6 / clocks_per_sec) / result.count,
((double)result.w_cycles * 1e6 / clocks_per_sec) / result.count,
input_size_dpu * sizeof(T) / ((double)result.r_cycles * 1e6 / clocks_per_sec),
input_size_dpu * sizeof(T) / ((double)result.w_cycles * 1e6 / clocks_per_sec),
input_size_dpu * sizeof(T) / ((double)result.r_cycles * 1e6 * NR_TASKLETS / clocks_per_sec),
input_size_dpu * sizeof(T) / ((double)result.w_cycles * 1e6 * NR_TASKLETS / clocks_per_sec));
}
#endif
i++;
}
if(rep >= p.n_warmup)
stop(&timer, 3);
}
// Check output
bool status = true;
for (i = 0; i < input_size; i++) {
if(C2[i] != bufferB[i]){
status = false;
#if PRINT
printf("%d: %u -- %u\n", i, C2[i], bufferB[i]);
#endif
}
}
if (status) {
} else {
printf("[" ANSI_COLOR_RED "ERROR" ANSI_COLOR_RESET "] Outputs differ!\n");
}
// Deallocation
free(A);
free(B);
free(C2);
DPU_ASSERT(dpu_free(dpu_set));
return status ? 0 : -1;
}
|