1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
#include <util/delay.h>
#include <avr/io.h>
#include <stdlib.h>
#include "storage.h"
Storage storage;
/*
* EEPROM data structure ("file system"):
*
* Organized as 32B-pages, all animations/texts are page-aligned. Byte 0 ..
* 255 : storage metadata. Byte 0 contains the number of animations, byte 1 the
* page offset of the first animation, byte 2 of the second, and so on.
* Byte 256+: texts/animations without additional storage metadata, aligned
* to 32B. So, a maximum of 256-(256/32) = 248 texts/animations can be stored,
* and a maximum of 255 * 32 = 8160 Bytes (almost 8 kB / 64 kbit) can be
* addressed. To support larger EEPROMS, change the metadate area to Byte 2 ..
* 511 and use 16bit page pointers.
*
* The text/animation size is not limited by this approach.
*
* Example:
* Byte 0 = 3 -> we've got a total of three animations
* Byte 1 = 0 -> first text/animation starts at byte 256 + 32*0 = 256
* Byte 2 = 4 -> second starts at byte 256 + 32*4 = 384
* Byte 3 = 5 -> third starts at 256 + 32*5 * 416
* Byte 4 = whatever
* .
* .
* .
* Byte 256ff = first text/animation. Has a header encoding its length in bytes.
* Byte 384ff = second
* Byte 416ff = third
* .
* .
* .
*/
void Storage::enable()
{
/*
* Set I2C clock frequency to 100kHz.
* freq = F_CPU / (16 + (2 * TWBR * TWPS) )
* let TWPS = "00" = 1
* -> TWBR = (F_CPU / 100000) - 16 / 2
*/
TWSR = 0; // the lower two bits control TWPS
TWBR = ((F_CPU / 100000UL) - 16) / 2;
i2c_read(0, 0, 1, &num_anims);
}
/*
* Send an I2C (re)start condition and the EEPROM address in read mode. Returns
* after it has been transmitted successfully.
*/
uint8_t Storage::i2c_start_read()
{
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
if (!(TWSR & 0x18)) // 0x08 == START ok, 0x10 == RESTART ok
return I2C_START_ERR;
// Note: The R byte ("... | 1") causes the TWI momodule to switch to
// Master Receive mode
TWDR = (I2C_EEPROM_ADDR << 1) | 1;
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
if (TWSR != 0x40) // 0x40 == SLA+R transmitted, ACK receveid
return I2C_ADDR_ERR;
return I2C_OK;
}
/*
* Send an I2C (re)start condition and the EEPROM address in write mode.
* Returns after it has been transmitted successfully.
*/
uint8_t Storage::i2c_start_write()
{
TWCR = _BV(TWINT) | _BV(TWSTA) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
if (!(TWSR & 0x18)) // 0x08 == START ok, 0x10 == RESTART ok
return I2C_START_ERR;
TWDR = (I2C_EEPROM_ADDR << 1) | 0;
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
if (TWSR != 0x18) // 0x18 == SLA+W transmitted, ACK received
return I2C_ADDR_ERR;
return I2C_OK;
}
/*
* Send an I2C stop condition.
*/
void Storage::i2c_stop()
{
TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN);
}
/*
* Sends len bytes to the EEPROM. Note that this method does NOT
* send I2C start or stop conditions.
*/
uint8_t Storage::i2c_send(uint8_t len, uint8_t *data)
{
uint8_t pos = 0;
for (pos = 0; pos < len; pos++) {
TWDR = data[pos];
TWCR = _BV(TWINT) | _BV(TWEN);
while (!(TWCR & _BV(TWINT)));
if (TWSR != 0x28) // 0x28 == byte transmitted, ACK received
return pos;
}
return pos;
}
/*
* Receives len bytes from the EEPROM into data. Note that this method does
* NOT send I2C start or stop conditions.
*/
uint8_t Storage::i2c_receive(uint8_t len, uint8_t *data)
{
uint8_t pos = 0;
for (pos = 0; pos < len; pos++) {
if (pos == len-1) {
// Don't ACK the last byte
TWCR = _BV(TWINT) | _BV(TWEN);
} else {
// Automatically send ACK
TWCR = _BV(TWINT) | _BV(TWEN) | _BV(TWEA);
}
while (!(TWCR & _BV(TWINT)));
data[pos] = TWDR;
/*
* No error handling here -- We send the acks, the EEPROM only
* supplies raw data, so there's no way of knowing whether it's still
* talking to us or we're just reading garbage.
*/
}
return pos;
}
/*
* Writes len bytes of data into the EEPROM, starting at byte number pos.
* Does not check for page boundaries.
* Includes a complete I2C transaction.
*/
uint8_t Storage::i2c_write(uint8_t addrhi, uint8_t addrlo, uint8_t len, uint8_t *data)
{
uint8_t addr_buf[2];
uint8_t num_tries;
addr_buf[0] = addrhi;
addr_buf[1] = addrlo;
/*
* The EEPROM might be busy processing a write command, which can
* take up to 10ms. Wait up to 16ms to respond before giving up.
* All other error conditions (even though they should never happen[tm])
* are handled the same way.
*/
for (num_tries = 0; num_tries < 16; num_tries++) {
if (num_tries > 0)
_delay_ms(1);
if (i2c_start_write() != I2C_OK)
continue; // EEPROM is busy writing
if (i2c_send(2, addr_buf) != 2)
continue; // should not happen
if (i2c_send(len, data) != len)
continue; // should not happen
i2c_stop();
return I2C_OK;
}
i2c_stop();
return I2C_ERR;
}
/*
* Reads len bytes of data from the EEPROM, starting at byte number pos.
* Does not check for page boundaries.
* Includes a complete I2C transaction.
*/
uint8_t Storage::i2c_read(uint8_t addrhi, uint8_t addrlo, uint8_t len, uint8_t *data)
{
uint8_t addr_buf[2];
uint8_t num_tries;
addr_buf[0] = addrhi;
addr_buf[1] = addrlo;
/*
* See comments in i2c_write.
*/
for (num_tries = 0; num_tries < 16; num_tries++) {
if (num_tries > 0)
_delay_ms(1);
if (i2c_start_write() != I2C_OK)
continue; // EEPROM is busy writing
if (i2c_send(2, addr_buf) != 2)
continue; // should not happen
if (i2c_start_read() != I2C_OK)
continue; // should not happen
if (i2c_receive(len, data) != len)
continue; // should not happen
i2c_stop();
return I2C_OK;
}
i2c_stop();
return I2C_ERR;
}
void Storage::reset()
{
first_free_page = 0;
num_anims = 0xff;
i2c_write(0, 0, 1, &num_anims); // pretend the EEPROM was never written to
num_anims = 0;
}
bool Storage::hasData()
{
// Unprogrammed EEPROM pages always read 0xff
if (num_anims == 0xff)
return false;
return true;
}
// TODO support multi-page reads
void Storage::load(uint8_t idx, uint8_t *data)
{
uint8_t page_offset;
uint8_t header[2];
i2c_read(0, 1 + idx, 1, &page_offset);
i2c_read(1 + (page_offset / 8), (page_offset % 8) * 32, 2, header);
i2c_read(1 + (page_offset / 8), (page_offset % 8) * 32, header[1] + 4, data);
}
void Storage::save(uint8_t *data)
{
num_anims++;
i2c_write(0, 0, 1, &num_anims);
i2c_write(0, num_anims, 1, &first_free_page);
append(data);
}
void Storage::append(uint8_t *data)
{
// the header indicates the length of the data, but we really don't care
// - it's easier to just write the whole page and skip the trailing
// garbage when reading.
i2c_write(1 + (first_free_page / 8), (first_free_page % 8) * 32, 32, data);
first_free_page++;
}
|