summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-09-07 14:57:39 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-09-07 14:57:39 +0200
commit8b969f4945e97d811b7a5b27c99b76cf2dd2840b (patch)
tree68b402ae63953d51d5d10308003b7ce0ea04db71
parent160546a8b11a26c1c56f26b8eff68e455fa9ca1e (diff)
parentab33810fa92f8a262695077ae9504c836cd3c1a2 (diff)
Merge branch 'master' into decisiontrees
-rwxr-xr-xbin/analyze-archive.py60
-rwxr-xr-xbin/generate-dfa-benchmark.py43
-rw-r--r--lib/loader.py6
-rw-r--r--lib/model.py8
-rw-r--r--lib/runner.py242
-rw-r--r--lib/validation.py21
-rwxr-xr-xtest/test_ptamodel.py465
7 files changed, 687 insertions, 158 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index 4c442af..5a6b8f0 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -101,6 +101,9 @@ Options:
--export-energymodel=<model.json>
Export energy model. Works out of the box for v1 and v2 logfiles. Requires --hwmodel for v0 logfiles.
+
+--no-cache
+ Do not load cached measurement results
"""
import getopt
@@ -142,6 +145,15 @@ def format_quality_measures(result):
def model_quality_table(result_lists, info_list):
+ print(
+ "{:20s} {:15s} {:19s} {:19s} {:19s}".format(
+ "key",
+ "attribute",
+ "static".center(19),
+ "parameterized".center(19),
+ "LUT".center(19),
+ )
+ )
for state_or_tran in result_lists[0]["by_name"].keys():
for key in result_lists[0]["by_name"][state_or_tran].keys():
buf = "{:20s} {:15s}".format(state_or_tran, key)
@@ -152,7 +164,7 @@ def model_quality_table(result_lists, info_list):
result = results["by_name"][state_or_tran][key]
buf += format_quality_measures(result)
else:
- buf += "{:6}----{:9}".format("", "")
+ buf += "{:7}----{:8}".format("", "")
print(buf)
@@ -300,7 +312,7 @@ if __name__ == "__main__":
try:
optspec = (
- "info "
+ "info no-cache "
"plot-unparam= plot-param= plot-traces= show-models= show-quality= "
"ignored-trace-indexes= function-override= "
"export-traces= "
@@ -362,11 +374,18 @@ if __name__ == "__main__":
sys.exit(2)
raw_data = RawData(
- args, with_traces=("export-traces" in opt or "plot-traces" in opt)
+ args,
+ with_traces=("export-traces" in opt or "plot-traces" in opt),
+ skip_cache=("no-cache" in opt),
)
if "info" in opt:
print(" ".join(raw_data.filenames) + ":")
+ if raw_data.ptalog:
+ options = " --".join(
+ map(lambda kv: f"{kv[0]}={str(kv[1])}", raw_data.ptalog["opt"].items())
+ )
+ print(f" Options: --{options}")
if raw_data.version <= 1:
data_source = "MIMOSA"
elif raw_data.version == 2:
@@ -420,7 +439,7 @@ if __name__ == "__main__":
)
sys.exit(2)
- if len(traces) > 20:
+ if len(traces) > 40:
print(f"""Truncating plot to 40 of {len(traces)} traces (random sample)""")
traces = random.sample(traces, 40)
@@ -693,7 +712,7 @@ if __name__ == "__main__":
)
if "overall" in show_quality or "all" in show_quality:
- print("overall static/param/lut MAE assuming equal state distribution:")
+ print("overall state static/param/lut MAE assuming equal state distribution:")
print(
" {:6.1f} / {:6.1f} / {:6.1f} µW".format(
model.assess_states(static_model),
@@ -701,15 +720,30 @@ if __name__ == "__main__":
model.assess_states(lut_model),
)
)
- print("overall static/param/lut MAE assuming 95% STANDBY1:")
- distrib = {"STANDBY1": 0.95, "POWERDOWN": 0.03, "TX": 0.01, "RX": 0.01}
- print(
- " {:6.1f} / {:6.1f} / {:6.1f} µW".format(
- model.assess_states(static_model, distribution=distrib),
- model.assess_states(param_model, distribution=distrib),
- model.assess_states(lut_model, distribution=distrib),
+ distrib = dict()
+ num_states = len(model.states())
+ p95_state = None
+ for state in model.states():
+ distrib[state] = 1.0 / num_states
+
+ if "STANDBY1" in model.states():
+ p95_state = "STANDBY1"
+ elif "SLEEP" in model.states():
+ p95_state = "SLEEP"
+
+ if p95_state is not None:
+ for state in distrib.keys():
+ distrib[state] = 0.05 / (num_states - 1)
+ distrib[p95_state] = 0.95
+
+ print(f"overall state static/param/lut MAE assuming 95% {p95_state}:")
+ print(
+ " {:6.1f} / {:6.1f} / {:6.1f} µW".format(
+ model.assess_states(static_model, distribution=distrib),
+ model.assess_states(param_model, distribution=distrib),
+ model.assess_states(lut_model, distribution=distrib),
+ )
)
- )
if "summary" in show_quality or "all" in show_quality:
model_summary_table(
diff --git a/bin/generate-dfa-benchmark.py b/bin/generate-dfa-benchmark.py
index 1410c28..64f8f73 100755
--- a/bin/generate-dfa-benchmark.py
+++ b/bin/generate-dfa-benchmark.py
@@ -223,17 +223,11 @@ def benchmark_from_runs(
)
elif opt["sleep"]:
if "energytrace" in opt:
- outbuf.write(
- "arch.sleep_ms({:d}); // {}\n".format(
- opt["sleep"], transition.destination.name
- )
- )
+ outbuf.write(f"// -> {transition.destination.name}\n")
+ outbuf.write(target.sleep_ms(opt["sleep"]))
else:
- outbuf.write(
- "arch.delay_ms({:d}); // {}\n".format(
- opt["sleep"], transition.destination.name
- )
- )
+ outbuf.write(f"// -> {transition.destination.name}\n")
+ outbuf.write("arch.delay_ms({:d});\n".format(opt["sleep"]))
outbuf.write(harness.stop_run(num_traces))
if dummy:
@@ -289,7 +283,7 @@ def run_benchmark(
needs_split = True
else:
try:
- runner.build(arch, app, run_args)
+ target.build(app, run_args)
except RuntimeError:
if len(runs) > 50:
# Application is too large -> split up runs
@@ -342,14 +336,14 @@ def run_benchmark(
i = 0
while i < opt["repeat"]:
print(f"""[RUN] flashing benchmark {i+1}/{opt["repeat"]}""")
- runner.flash(arch, app, run_args)
+ target.flash(app, run_args)
if "mimosa" in opt:
- monitor = runner.get_monitor(
- arch, callback=harness.parser_cb, mimosa=opt["mimosa"]
+ monitor = target.get_monitor(
+ callback=harness.parser_cb, mimosa=opt["mimosa"]
)
elif "energytrace" in opt:
- monitor = runner.get_monitor(
- arch, callback=harness.parser_cb, energytrace=opt["energytrace"]
+ monitor = target.get_monitor(
+ callback=harness.parser_cb, energytrace=opt["energytrace"]
)
sync_error = False
@@ -400,8 +394,8 @@ def run_benchmark(
return [(runs, harness, monitor, files)]
else:
- runner.flash(arch, app, run_args)
- monitor = runner.get_monitor(arch, callback=harness.parser_cb)
+ target.flash(app, run_args)
+ monitor = target.get_monitor(callback=harness.parser_cb)
if arch == "posix":
print("[RUN] Will run benchmark for {:.0f} seconds".format(run_timeout))
@@ -518,6 +512,11 @@ if __name__ == "__main__":
print(err)
sys.exit(2)
+ if "msp430fr" in opt["arch"]:
+ target = runner.Arch(opt["arch"], ["cpu_freq=8000000"])
+ else:
+ target = runner.Arch(opt["arch"])
+
modelfile = args[0]
pta = PTA.from_file(modelfile)
@@ -594,8 +593,8 @@ if __name__ == "__main__":
if "codegen" in driver_definition and "flags" in driver_definition["codegen"]:
if run_flags is None:
run_flags = driver_definition["codegen"]["flags"]
- if run_flags is None:
- run_flags = opt["run"].split()
+ if "run" in opt:
+ run_flags.extend(opt["run"].split())
runs = list(
pta.dfs(
@@ -642,7 +641,7 @@ if __name__ == "__main__":
gpio_pin=timer_pin,
gpio_mode=gpio_mode,
pta=pta,
- counter_limits=runner.get_counter_limits_us(opt["arch"]),
+ counter_limits=target.get_counter_limits_us(run_flags),
log_return_values=need_return_values,
repeat=1,
)
@@ -650,7 +649,7 @@ if __name__ == "__main__":
harness = OnboardTimerHarness(
gpio_pin=timer_pin,
pta=pta,
- counter_limits=runner.get_counter_limits_us(opt["arch"]),
+ counter_limits=target.get_counter_limits_us(run_flags),
log_return_values=need_return_values,
repeat=opt["repeat"],
)
diff --git a/lib/loader.py b/lib/loader.py
index c35eb4c..57b3d30 100644
--- a/lib/loader.py
+++ b/lib/loader.py
@@ -242,7 +242,7 @@ class RawData:
file system, making subsequent loads near-instant.
"""
- def __init__(self, filenames, with_traces=False):
+ def __init__(self, filenames, with_traces=False, skip_cache=False):
"""
Create a new RawData object.
@@ -321,7 +321,7 @@ class RawData:
self.pta = self.ptalog["pta"]
self.set_cache_file()
- if not with_traces:
+ if not with_traces and not skip_cache:
self.load_cache()
def set_cache_file(self):
@@ -481,7 +481,7 @@ class RawData:
if sorted(online_trace_part["parameter"].keys()) != self._parameter_names:
processed_data[
"error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}".format(
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want}, is {param_is}".format(
off_idx=offline_idx,
on_idx=online_run_idx,
on_sub=online_trace_part_idx,
diff --git a/lib/model.py b/lib/model.py
index f53f645..41cf726 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -5,6 +5,7 @@ import numpy as np
from scipy import optimize
from sklearn.metrics import r2_score
from multiprocessing import Pool
+from .automata import PTA
from .functions import analytic
from .functions import AnalyticFunction
from .parameters import ParamStats
@@ -1111,13 +1112,16 @@ class PTAModel:
static_quality = self.assess(static_model)
param_model, param_info = self.get_fitted()
analytic_quality = self.assess(param_model)
- self.pta.update(
+ pta = self.pta
+ if pta is None:
+ pta = PTA(self.states(), parameters=self._parameter_names)
+ pta.update(
static_model,
param_info,
static_error=static_quality["by_name"],
analytic_error=analytic_quality["by_name"],
)
- return self.pta.to_json()
+ return pta.to_json()
def states(self):
"""Return sorted list of state names."""
diff --git a/lib/runner.py b/lib/runner.py
index aeb8600..71ca799 100644
--- a/lib/runner.py
+++ b/lib/runner.py
@@ -311,113 +311,157 @@ class ShellMonitor:
pass
-def build(arch, app, opts=[]):
- command = ["make", "arch={}".format(arch), "app={}".format(app), "clean"]
- command.extend(opts)
- res = subprocess.run(
- command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True
- )
- if res.returncode != 0:
- raise RuntimeError(
- "Build failure, executing {}:\n".format(command) + res.stderr
+class Arch:
+ def __init__(self, name, opts=list()):
+ self.name = name
+ self.opts = opts
+ self.info = self.get_info()
+
+ def build(self, app, opts=list()):
+ command = ["make", "arch={}".format(self.name), "app={}".format(app), "clean"]
+ command.extend(self.opts)
+ command.extend(opts)
+ res = subprocess.run(
+ command,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.PIPE,
+ universal_newlines=True,
)
- command = ["make", "-B", "arch={}".format(arch), "app={}".format(app)]
- command.extend(opts)
- res = subprocess.run(
- command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True
- )
- if res.returncode != 0:
- raise RuntimeError(
- "Build failure, executing {}:\n ".format(command) + res.stderr
+ if res.returncode != 0:
+ raise RuntimeError(
+ "Build failure, executing {}:\n".format(command) + res.stderr
+ )
+ command = ["make", "-B", "arch={}".format(self.name), "app={}".format(app)]
+ command.extend(self.opts)
+ command.extend(opts)
+ res = subprocess.run(
+ command,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.PIPE,
+ universal_newlines=True,
)
- return command
-
-
-def flash(arch, app, opts=[]):
- command = ["make", "arch={}".format(arch), "app={}".format(app), "program"]
- command.extend(opts)
- res = subprocess.run(
- command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True
- )
- if res.returncode != 0:
- raise RuntimeError("Flash failure")
- return command
+ if res.returncode != 0:
+ raise RuntimeError(
+ "Build failure, executing {}:\n ".format(command) + res.stderr
+ )
+ return command
+ def flash(self, app, opts=list()):
+ command = ["make", "arch={}".format(self.name), "app={}".format(app), "program"]
+ command.extend(self.opts)
+ command.extend(opts)
+ res = subprocess.run(
+ command,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.PIPE,
+ universal_newlines=True,
+ )
+ if res.returncode != 0:
+ raise RuntimeError("Flash failure")
+ return command
-def get_info(arch, opts: list = []) -> list:
- """
- Return multipass "make info" output.
+ def get_info(self, opts=list()) -> list:
+ """
+ Return multipass "make info" output.
- Returns a list.
- """
- command = ["make", "arch={}".format(arch), "info"]
- command.extend(opts)
- res = subprocess.run(
- command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True
- )
- if res.returncode != 0:
- raise RuntimeError("make info Failure")
- return res.stdout.split("\n")
+ Returns a list.
+ """
+ command = ["make", "arch={}".format(self.name), "info"]
+ command.extend(self.opts)
+ command.extend(opts)
+ res = subprocess.run(
+ command,
+ stdout=subprocess.PIPE,
+ stderr=subprocess.PIPE,
+ universal_newlines=True,
+ )
+ if res.returncode != 0:
+ raise RuntimeError("make info Failure")
+ return res.stdout.split("\n")
+ def _cached_info(self, opts=list()) -> list:
+ if len(opts):
+ return self.get_info(opts)
+ return self.info
-def get_monitor(arch: str, **kwargs) -> object:
- """
- Return an appropriate monitor for arch, depending on "make info" output.
+ def get_monitor(self, **kwargs) -> object:
+ """
+ Return an appropriate monitor for arch, depending on "make info" output.
- Port and Baud rate are taken from "make info".
+ Port and Baud rate are taken from "make info".
- :param arch: architecture name, e.g. 'msp430fr5994lp' or 'posix'
- :param energytrace: `EnergyTraceMonitor` options. Returns an EnergyTrace monitor if not None.
- :param mimosa: `MIMOSAMonitor` options. Returns a MIMOSA monitor if not None.
- """
- for line in get_info(arch):
- if "Monitor:" in line:
- _, port, arg = line.split(" ")
- if port == "run":
- return ShellMonitor(arg, **kwargs)
- elif "mimosa" in kwargs and kwargs["mimosa"] is not None:
- mimosa_kwargs = kwargs.pop("mimosa")
- return MIMOSAMonitor(port, arg, **mimosa_kwargs, **kwargs)
- elif "energytrace" in kwargs and kwargs["energytrace"] is not None:
- energytrace_kwargs = kwargs.pop("energytrace").copy()
- sync_mode = energytrace_kwargs.pop("sync")
- if sync_mode == "la":
- return EnergyTraceLogicAnalyzerMonitor(
- port, arg, **energytrace_kwargs, **kwargs
- )
+ :param energytrace: `EnergyTraceMonitor` options. Returns an EnergyTrace monitor if not None.
+ :param mimosa: `MIMOSAMonitor` options. Returns a MIMOSA monitor if not None.
+ """
+ for line in self.info:
+ if "Monitor:" in line:
+ _, port, arg = line.split(" ")
+ if port == "run":
+ return ShellMonitor(arg, **kwargs)
+ elif "mimosa" in kwargs and kwargs["mimosa"] is not None:
+ mimosa_kwargs = kwargs.pop("mimosa")
+ return MIMOSAMonitor(port, arg, **mimosa_kwargs, **kwargs)
+ elif "energytrace" in kwargs and kwargs["energytrace"] is not None:
+ energytrace_kwargs = kwargs.pop("energytrace").copy()
+ sync_mode = energytrace_kwargs.pop("sync")
+ if sync_mode == "la":
+ return EnergyTraceLogicAnalyzerMonitor(
+ port, arg, **energytrace_kwargs, **kwargs
+ )
+ else:
+ return EnergyTraceMonitor(
+ port, arg, **energytrace_kwargs, **kwargs
+ )
else:
- return EnergyTraceMonitor(port, arg, **energytrace_kwargs, **kwargs)
+ kwargs.pop("energytrace", None)
+ kwargs.pop("mimosa", None)
+ return SerialMonitor(port, arg, **kwargs)
+ raise RuntimeError("Monitor failure")
+
+ def get_counter_limits(self, opts=list()) -> tuple:
+ """Return multipass max counter and max overflow value for arch."""
+ for line in self._cached_info(opts):
+ match = re.match("Counter Overflow: ([^/]*)/(.*)", line)
+ if match:
+ overflow_value = int(match.group(1))
+ max_overflow = int(match.group(2))
+ return overflow_value, max_overflow
+ raise RuntimeError("Did not find Counter Overflow limits")
+
+ def sleep_ms(self, duration: int, opts=list()) -> str:
+ max_sleep = None
+ if "msp430fr" in self.name:
+ cpu_freq = None
+ for line in self._cached_info(opts):
+ match = re.match(r"CPU\s+Freq:\s+(.*)\s+Hz", line)
+ if match:
+ cpu_freq = int(match.group(1))
+ if cpu_freq is not None and cpu_freq > 8000000:
+ max_sleep = 250
else:
- kwargs.pop("energytrace", None)
- kwargs.pop("mimosa", None)
- return SerialMonitor(port, arg, **kwargs)
- raise RuntimeError("Monitor failure")
-
-
-def get_counter_limits(arch: str) -> tuple:
- """Return multipass max counter and max overflow value for arch."""
- for line in get_info(arch):
- match = re.match("Counter Overflow: ([^/]*)/(.*)", line)
- if match:
- overflow_value = int(match.group(1))
- max_overflow = int(match.group(2))
- return overflow_value, max_overflow
- raise RuntimeError("Did not find Counter Overflow limits")
-
-
-def get_counter_limits_us(arch: str) -> tuple:
- """Return duration of one counter step and one counter overflow in us."""
- cpu_freq = 0
- overflow_value = 0
- max_overflow = 0
- for line in get_info(arch):
- match = re.match(r"CPU\s+Freq:\s+(.*)\s+Hz", line)
- if match:
- cpu_freq = int(match.group(1))
- match = re.match(r"Counter Overflow:\s+([^/]*)/(.*)", line)
- if match:
- overflow_value = int(match.group(1))
- max_overflow = int(match.group(2))
- if cpu_freq and overflow_value:
- return 1000000 / cpu_freq, overflow_value * 1000000 / cpu_freq, max_overflow
- raise RuntimeError("Did not find Counter Overflow limits")
+ max_sleep = 500
+ if max_sleep is not None and duration > max_sleep:
+ sub_sleep_count = duration // max_sleep
+ tail_sleep = duration % max_sleep
+ ret = f"for (unsigned char i = 0; i < {sub_sleep_count}; i++) {{ arch.sleep_ms({max_sleep}); }}\n"
+ if tail_sleep > 0:
+ ret += f"arch.sleep_ms({tail_sleep});\n"
+ return ret
+ return f"arch.sleep_ms({duration});\n"
+
+ def get_counter_limits_us(self, opts=list()) -> tuple:
+ """Return duration of one counter step and one counter overflow in us."""
+ cpu_freq = 0
+ overflow_value = 0
+ max_overflow = 0
+ for line in self._cached_info(opts):
+ match = re.match(r"CPU\s+Freq:\s+(.*)\s+Hz", line)
+ if match:
+ cpu_freq = int(match.group(1))
+ match = re.match(r"Counter Overflow:\s+([^/]*)/(.*)", line)
+ if match:
+ overflow_value = int(match.group(1))
+ max_overflow = int(match.group(2))
+ if cpu_freq and overflow_value:
+ return 1000000 / cpu_freq, overflow_value * 1000000 / cpu_freq, max_overflow
+ raise RuntimeError("Did not find Counter Overflow limits")
diff --git a/lib/validation.py b/lib/validation.py
index 98d49c1..ee147fe 100644
--- a/lib/validation.py
+++ b/lib/validation.py
@@ -179,6 +179,7 @@ class CrossValidator:
for attribute in self.by_name[name]["attributes"]:
ret["by_name"][name][attribute] = {
"mae_list": list(),
+ "rmsd_list": list(),
"smape_list": list(),
}
@@ -186,21 +187,17 @@ class CrossValidator:
res = self._single_xv(model_getter, training_and_validation_by_name)
for name in self.names:
for attribute in self.by_name[name]["attributes"]:
- ret["by_name"][name][attribute]["mae_list"].append(
- res["by_name"][name][attribute]["mae"]
- )
- ret["by_name"][name][attribute]["smape_list"].append(
- res["by_name"][name][attribute]["smape"]
- )
+ for measure in ("mae", "rmsd", "smape"):
+ ret["by_name"][name][attribute][f"{measure}_list"].append(
+ res["by_name"][name][attribute][measure]
+ )
for name in self.names:
for attribute in self.by_name[name]["attributes"]:
- ret["by_name"][name][attribute]["mae"] = np.mean(
- ret["by_name"][name][attribute]["mae_list"]
- )
- ret["by_name"][name][attribute]["smape"] = np.mean(
- ret["by_name"][name][attribute]["smape_list"]
- )
+ for measure in ("mae", "rmsd", "smape"):
+ ret["by_name"][name][attribute][measure] = np.mean(
+ ret["by_name"][name][attribute][f"{measure}_list"]
+ )
return ret
diff --git a/test/test_ptamodel.py b/test/test_ptamodel.py
index 94ee842..e8905b1 100755
--- a/test/test_ptamodel.py
+++ b/test/test_ptamodel.py
@@ -2,13 +2,464 @@
from dfatool.loader import RawData, pta_trace_to_aggregate
from dfatool.model import PTAModel
+from dfatool.utils import by_name_to_by_param
+from dfatool.validation import CrossValidator
import os
import unittest
import pytest
+import numpy as np
-class TestModels(unittest.TestCase):
- def test_model_singlefile_rf24(self):
+
+class TestSynthetic(unittest.TestCase):
+ def test_model_validation(self):
+ # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17
+ np.random.seed(1312)
+ X = np.arange(500) % 50
+ parameter_names = ["p_mod5", "p_linear"]
+
+ s1_duration_base = 70
+ s1_duration_scale = 2
+ s1_power_base = 50
+ s1_power_scale = 7
+ s2_duration_base = 700
+ s2_duration_scale = 1
+ s2_power_base = 1500
+ s2_power_scale = 10
+
+ by_name = {
+ "raw_state_1": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s1_duration_base
+ + np.random.normal(size=X.size, scale=s1_duration_scale),
+ "power": s1_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s1_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ "raw_state_2": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s2_duration_base
+ - 2 * X
+ + np.random.normal(size=X.size, scale=s2_duration_scale),
+ "power": s2_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s2_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ }
+ by_param = by_name_to_by_param(by_name)
+ model = PTAModel(by_name, parameter_names, dict())
+ static_model = model.get_static()
+
+ # x ∈ [0, 50] -> mean(X) is 25
+ self.assertAlmostEqual(
+ static_model("raw_state_1", "duration"), s1_duration_base, places=0
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_1", "power"), s1_power_base + 25, delta=7
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_2", "duration"), s2_duration_base - 2 * 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_model("raw_state_2", "power"), s2_power_base + 25, delta=7
+ )
+
+ param_model, param_info = model.get_fitted()
+
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 10]),
+ s1_duration_base,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 50]),
+ s1_duration_base,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "duration", param=[0, 70]),
+ s1_duration_base,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 10]),
+ s1_power_base + 10,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 50]),
+ s1_power_base + 50,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_1", "power", param=[0, 70]),
+ s1_power_base + 70,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 10]),
+ s2_duration_base - 2 * 10,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 50]),
+ s2_duration_base - 2 * 50,
+ places=0,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "duration", param=[0, 70]),
+ s2_duration_base - 2 * 70,
+ places=0,
+ )
+
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 10]),
+ s2_power_base + 10,
+ delta=50,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 50]),
+ s2_power_base + 50,
+ delta=50,
+ )
+ self.assertAlmostEqual(
+ param_model("raw_state_2", "power", param=[0, 70]),
+ s2_power_base + 70,
+ delta=50,
+ )
+
+ static_quality = model.assess(static_model)
+ param_quality = model.assess(param_model)
+
+ # static quality reflects normal distribution scale for non-parameterized data
+
+ # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution
+ # Low Mean Absolute Error (< 2)
+ self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2)
+ # Low Root Mean Square Deviation (< scale == 2)
+ self.assertTrue(
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2
+ )
+ # Relatively low error percentage (~~ MAE * 100% / s1_duration_base)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+
+ # static error is high for parameterized data
+
+ # MAE == mean(abs(actual value - model value))
+ # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2
+ )
+ # high percentage error due to low s1_power_base
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mape"], 19, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2
+ )
+
+ # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2
+ )
+
+ # low percentage error due to high s2_duration_base (~~ 3.5 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2
+ )
+
+ # low percentage error due to high s2_power_base (~~ 1.7 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["smape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+
+ # raw_state_1/duration does not depend on parameters and delegates to the static model
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mape"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ )
+
+ # fitted param-model quality reflects normal distribution scale for all data
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale
+ )
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["mape"], 7.5, delta=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1
+ )
+
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mae"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mape"],
+ 0.12,
+ delta=0.01,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 0.12,
+ delta=0.01,
+ )
+
+ # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to
+ # increased regression errors
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15)
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18)
+
+ # still: low percentage error due to high s2_power_base
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ def test_model_crossvalidation_10fold(self):
+ # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17
+ np.random.seed(1312)
+ X = np.arange(500) % 50
+ parameter_names = ["p_mod5", "p_linear"]
+
+ s1_duration_base = 70
+ s1_duration_scale = 2
+ s1_power_base = 50
+ s1_power_scale = 7
+ s2_duration_base = 700
+ s2_duration_scale = 1
+ s2_power_base = 1500
+ s2_power_scale = 10
+
+ by_name = {
+ "raw_state_1": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s1_duration_base
+ + np.random.normal(size=X.size, scale=s1_duration_scale),
+ "power": s1_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s1_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ "raw_state_2": {
+ "isa": "state",
+ "param": [(x % 5, x) for x in X],
+ "duration": s2_duration_base
+ - 2 * X
+ + np.random.normal(size=X.size, scale=s2_duration_scale),
+ "power": s2_power_base
+ + X
+ + np.random.normal(size=X.size, scale=s2_power_scale),
+ "attributes": ["duration", "power"],
+ },
+ }
+ by_param = by_name_to_by_param(by_name)
+ arg_count = dict()
+ model = PTAModel(by_name, parameter_names, arg_count)
+ validator = CrossValidator(PTAModel, by_name, parameter_names, arg_count)
+
+ static_quality = validator.kfold(lambda m: m.get_static(), 10)
+ param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10)
+
+ print(static_quality)
+
+ # static quality reflects normal distribution scale for non-parameterized data
+
+ # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution
+ # Low Mean Absolute Error (< 2)
+ self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2)
+ # Low Root Mean Square Deviation (< scale == 2)
+ self.assertTrue(
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2
+ )
+ # Relatively low error percentage (~~ MAE * 100% / s1_duration_base)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"]
+ * 100
+ / s1_duration_base,
+ places=1,
+ )
+
+ # static error is high for parameterized data
+
+ # MAE == mean(abs(actual value - model value))
+ # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2
+ )
+ # high percentage error due to low s1_power_base
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2
+ )
+
+ # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2
+ )
+
+ # low percentage error due to high s2_duration_base (~~ 3.5 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 25 * 100 / s2_duration_base,
+ delta=1,
+ )
+
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2
+ )
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2
+ )
+
+ # low percentage error due to high s2_power_base (~~ 1.7 %)
+ self.assertAlmostEqual(
+ static_quality["by_name"]["raw_state_2"]["power"]["smape"],
+ 25 * 100 / s2_power_base,
+ delta=1,
+ )
+
+ # raw_state_1/duration does not depend on parameters and delegates to the static model
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["mae"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"],
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ static_quality["by_name"]["raw_state_1"]["duration"]["smape"],
+ )
+
+ # fitted param-model quality reflects normal distribution scale for all data
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale
+ )
+ self.assertTrue(
+ param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1
+ )
+
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["mae"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"],
+ s2_duration_scale,
+ delta=0.2,
+ )
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["duration"]["smape"],
+ 0.12,
+ delta=0.01,
+ )
+
+ # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to
+ # increased regression errors
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15)
+ self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18)
+
+ # still: low percentage error due to high s2_power_base
+ self.assertAlmostEqual(
+ param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1
+ )
+
+
+class TestFromFile(unittest.TestCase):
+ def test_singlefile_rf24(self):
raw_data = RawData(["test-data/20170220_164723_RF24_int_A.tar"])
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
@@ -162,7 +613,7 @@ class TestModels(unittest.TestCase):
param_model("RX", "power", param=[1, None, None]), 48647, places=-1
)
- def test_model_singlefile_mmparam(self):
+ def test_singlefile_mmparam(self):
raw_data = RawData(["test-data/20161221_123347_mmparam.tar"])
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
@@ -201,7 +652,7 @@ class TestModels(unittest.TestCase):
param_lut_model("ON", "power", param=[None, None]), 17866, places=0
)
- def test_model_multifile_lm75x(self):
+ def test_multifile_lm75x(self):
testfiles = [
"test-data/20170116_124500_LM75x.tar",
"test-data/20170116_131306_LM75x.tar",
@@ -243,7 +694,7 @@ class TestModels(unittest.TestCase):
self.assertAlmostEqual(static_model("shutdown", "duration"), 6980, places=0)
self.assertAlmostEqual(static_model("start", "duration"), 6980, places=0)
- def test_model_multifile_sharp(self):
+ def test_multifile_sharp(self):
testfiles = [
"test-data/20170116_145420_sharpLS013B4DN.tar",
"test-data/20170116_151348_sharpLS013B4DN.tar",
@@ -285,7 +736,7 @@ class TestModels(unittest.TestCase):
self.assertAlmostEqual(static_model("sendLine", "duration"), 180, places=0)
self.assertAlmostEqual(static_model("toggleVCOM", "duration"), 30, places=0)
- def test_model_multifile_mmstatic(self):
+ def test_multifile_mmstatic(self):
testfiles = [
"test-data/20170116_143516_mmstatic.tar",
"test-data/20170116_142654_mmstatic.tar",
@@ -325,7 +776,7 @@ class TestModels(unittest.TestCase):
@pytest.mark.skipif(
"TEST_SLOW" not in os.environ, reason="slow test, set TEST_SLOW=1 to run"
)
- def test_model_multifile_cc1200(self):
+ def test_multifile_cc1200(self):
testfiles = [
"test-data/20170125_125433_cc1200.tar",
"test-data/20170125_142420_cc1200.tar",