summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-10-02 16:49:16 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-10-02 16:49:16 +0200
commit77db5abbcdf8418cf9c758a273354aab28ef9afc (patch)
treee2483605d17e7197928253f56ed7a00c9323d76f
parentd720c861939bdd27388971a51ed59a0eea3cf594 (diff)
improve co-dependent parameter detection logic
also makes distinct_param_values more deterministic
-rwxr-xr-xlib/dfatool.py58
-rw-r--r--lib/utils.py37
2 files changed, 66 insertions, 29 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 616e6fd..ac0885b 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -15,7 +15,7 @@ from multiprocessing import Pool
from automata import PTA
from functions import analytic
from functions import AnalyticFunction
-from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple
+from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple, is_power_of_two, distinct_param_values
arg_support_enabled = True
@@ -430,6 +430,48 @@ class ParamStats:
"""
return 1 - self._generic_param_independence_ratio(state_or_trans, attribute)
+ def _reduce_param_matrix(self, matrix: np.ndarray, parameter_names: list) -> list:
+ """
+ :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...)
+ :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc.
+ :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not
+ affect (parameter)'s influence on (model attribute) -- it either always or never has an influence
+ """
+ if np.all(matrix == True) or np.all(matrix == False):
+ return list()
+
+ if not is_power_of_two(np.count_nonzero(matrix)):
+ # cannot be reliably reduced to a list of parameters
+ return list()
+
+ if np.count_nonzero(matrix) == 1:
+ influential_parameters = list()
+ for i, parameter_name in enumerate(parameter_names):
+ if matrix.shape[i] > 1:
+ influential_parameters.append(parameter_name)
+ return influential_parameters
+
+ for axis in range(matrix.ndim):
+ candidate = self._reduce_param_matrix(np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis))
+ if len(candidate):
+ return candidate
+
+ return list()
+
+ def _get_codependent_parameters(self, stats, param):
+ """
+ Return list of parameters which affect whether `param` influences the model attribute described in `stats` or not.
+ """
+ safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
+ ratio_by_value = safe_div(stats['lut_by_param_values'][param], stats['std_by_param_values'][param])
+ err_mode = np.seterr('ignore')
+ dep_by_value = ratio_by_value > 0.5
+ np.seterr(**err_mode)
+
+ other_param_list = list(filter(lambda x: x != param, self._parameter_names))
+ influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list)
+ return influencer_parameters
+
def _param_independence_ratio(self, state_or_trans, attribute, param):
"""
Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param.
@@ -446,17 +488,9 @@ class ParamStats:
# This means that the variation of param does not affect the model quality -> no influence, return 1
return 1.
- safe_div = np.vectorize(lambda x,y: 1. if x == 0 else x/y)
- std_by_value = safe_div(statistics['lut_by_param_values'][param], statistics['std_by_param_values'][param])
-
- i = 0
- for other_param in self._parameter_names:
- if param != other_param and not np.any(np.isnan(std_by_value)) and std_by_value.shape[i] > 1:
- dep1 = np.all(std_by_value < 0.5, axis=i)
- dep2 = np.all(std_by_value >= 0.5, axis=i)
- if np.any(dep1 | dep2 == False):
- print('possible correlation {}/{} {} <-> {}'.format(state_or_trans, attribute, param, other_param))
- i += 1
+ influencer_parameters = self._get_codependent_parameters(statistics, param)
+ if len(influencer_parameters):
+ print('{}/{} {} <-> {}'.format(state_or_trans, attribute, param, influencer_parameters))
return statistics['std_param_lut'] / statistics['std_by_param'][param]
diff --git a/lib/utils.py b/lib/utils.py
index 0910d8a..549b673 100644
--- a/lib/utils.py
+++ b/lib/utils.py
@@ -23,6 +23,10 @@ def is_numeric(n):
except ValueError:
return False
+def is_power_of_two(n):
+ """Check if `n` is a power of two (1, 2, 4, 8, 16, ...)."""
+ return n > 0 and (n & (n-1)) == 0
+
def float_or_nan(n):
"""Convert `n` to float (if numeric) or NaN."""
if n == None:
@@ -34,7 +38,7 @@ def float_or_nan(n):
def soft_cast_int(n):
"""
- Convert `n` to int, if possible.
+ Convert `n` to int (if numeric) or return it as-is.
If `n` is empty, returns None.
If `n` is not numeric, it is left unchanged.
@@ -48,7 +52,7 @@ def soft_cast_int(n):
def soft_cast_float(n):
"""
- Convert `n` to float, if possible.
+ Convert `n` to float (if numeric) or return it as-is.
If `n` is empty, returns None.
If `n` is not numeric, it is left unchanged.
@@ -232,15 +236,17 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat
np.seterr('raise')
+ param_values = distinct_param_values(by_name, state_or_trans)
+
for param_idx, param in enumerate(parameter_names):
- std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, param_idx, verbose)
+ std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, param_idx, verbose)
ret['std_by_param'][param] = mean_std
ret['std_by_param_values'][param] = std_matrix
ret['lut_by_param_values'][param] = lut_matrix
ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx)
if arg_support_enabled and state_or_trans in arg_count:
for arg_index in range(arg_count[state_or_trans]):
- std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, len(parameter_names) + arg_index, verbose)
+ std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, len(parameter_names) + arg_index, verbose)
ret['std_by_arg'].append(mean_std)
ret['std_by_arg_values'].append(std_matrix)
ret['lut_by_arg_values'].append(lut_matrix)
@@ -248,13 +254,13 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat
return ret
-def _param_values(by_param, state_or_tran):
+def distinct_param_values(by_name, state_or_tran):
"""
- Return the distinct values of each parameter in by_param.
+ Return the distinct values of each parameter in by_name[state_or_tran].
- E.g. if by_param.keys() contains the distinct parameter values (1, 1), (1, 2), (1, 3), (0, 3),
+ E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3),
this function returns [[1, 0], [1, 2, 3]].
- Note that the order is not deterministic at the moment.
+ Note that the order is not guaranteed to be deterministic at the moment.
Also note that this function deliberately also consider None
(uninitialized parameter with unknown value) as a distinct value. Benchmarks
@@ -262,21 +268,19 @@ def _param_values(by_param, state_or_tran):
not important yet, e.g. a packet length parameter must only be None when
write() or similar has not been called yet. Other parameters should always
be initialized when leaving UNINITIALIZED.
-
"""
- param_tuples = list(map(lambda x: x[1], filter(lambda x: x[0] == state_or_tran, by_param.keys())))
- distinct_values = [set() for i in range(len(param_tuples[0]))]
- for param_tuple in param_tuples:
+ # TODO a set() is an _unordered_ collection, so this must be converted to
+ # an OrderedDict or a list with a duplicate-pruning step
+ distinct_values = [set() for i in range(len(by_name[state_or_tran]['param'][0]))]
+ for param_tuple in by_name[state_or_tran]['param']:
for i in range(len(param_tuple)):
distinct_values[i].add(param_tuple[i])
- # TODO returned values must have a deterministic order
-
# Convert sets to lists
distinct_values = list(map(list, distinct_values))
return distinct_values
-def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = False):
+def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False):
u"""
Calculate standard deviations for a static model where all parameters but param_index are constant.
@@ -299,8 +303,7 @@ def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = Fal
stddev of measurements with param0 == a, param1 == b, param2 variable,
and param3 == d.
"""
- # TODO precalculate or cache info_shape (it only depends on state_or_tran)
- param_values = list(remove_index_from_tuple(_param_values(by_param, state_or_tran), param_index))
+ param_values = list(remove_index_from_tuple(all_param_values, param_index))
info_shape = tuple(map(len, param_values))
# We will calculate the mean over the entire matrix later on. We cannot