summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2017-04-04 15:11:31 +0200
committerDaniel Friesel <derf@finalrewind.org>2017-04-04 15:11:31 +0200
commit398f3d6d86433c32a5b69b3581b4a32e5d22410d (patch)
tree3afe91fcaa42e8e75837c5d28f77fa3576761756
parent418111ca15c3949a9a29b5ebbe908571ed601e1b (diff)
split up rel_energy inte relative energy to previous state and to next state
-rwxr-xr-xbin/merge.py147
-rw-r--r--lib/Kratos/DFADriver.pm38
-rw-r--r--lib/Kratos/DFADriver/Model.pm78
-rw-r--r--lib/MIMOSA/Log.pm2
-rwxr-xr-xlib/dfatool.py19
5 files changed, 190 insertions, 94 deletions
diff --git a/bin/merge.py b/bin/merge.py
index 1ff7e74..b0d7d22 100755
--- a/bin/merge.py
+++ b/bin/merge.py
@@ -9,6 +9,7 @@ import sys
import plotter
from copy import deepcopy
from dfatool import aggregate_measures, regression_measures, is_numeric, powerset
+from dfatool import append_if_set, mean_or_none
from matplotlib.patches import Polygon
from scipy import optimize
@@ -42,17 +43,21 @@ def mimosa_data(elem):
substate_thresholds = []
substate_data = []
timeouts = []
- rel_energies = []
+ rel_energies_prev = []
+ rel_energies_next = []
if 'timeout' in elem['offline'][0]:
timeouts = [x['timeout'] for x in elem['offline']]
- if 'uW_mean_delta' in elem['offline'][0]:
- rel_energies = [x['uW_mean_delta'] * (x['us'] - 20) for x in elem['offline']]
+ if 'uW_mean_delta_prev' in elem['offline'][0]:
+ rel_energies_prev = [x['uW_mean_delta_prev'] * (x['us'] - 20) for x in elem['offline']]
+ if 'uW_mean_delta_next' in elem['offline'][0]:
+ rel_energies_next = [x['uW_mean_delta_next'] * (x['us'] - 20) for x in elem['offline']]
for x in elem['offline']:
if 'substates' in x:
substate_thresholds.append(x['substates']['threshold'])
substate_data.append(x['substates']['states'])
- return means, stds, durations, energies, rel_energies, clips, timeouts, substate_thresholds
+ return (means, stds, durations, energies, rel_energies_prev,
+ rel_energies_next, clips, timeouts, substate_thresholds)
def online_data(elem):
means = [int(x['power']) for x in elem['online']]
@@ -254,8 +259,8 @@ def xv_assess_function(name, funbase, what, validation, mae, smape):
mae[name] = []
if not name in smape:
smape[name] = []
- mae[name].append(goodness['mae'])
- smape[name].append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(smape, goodness, 'smape')
def xv2_assess_function(name, funbase, what, validation, mae, smape, rmsd):
goodness = assess_function(funbase, name, what, parameters, validation)
@@ -311,15 +316,19 @@ def fake_add_data_to_aggregate(aggregate, key, isa, database, idx):
timeout_val = []
if len(database['timeouts']):
timeout_val = [database['timeouts'][idx]]
- rel_energy_val = []
- if len(database['rel_energies']):
- rel_energy_val = [database['rel_energies'][idx]]
+ rel_energy_p_val = []
+ if len(database['rel_energies_prev']):
+ rel_energy_p_val = [database['rel_energies_prev'][idx]]
+ rel_energy_n_val = []
+ if len(database['rel_energies_next']):
+ rel_energy_n_val = [database['rel_energies_next'][idx]]
add_data_to_aggregate(aggregate, key, isa, {
'means' : [database['means'][idx]],
'stds' : [database['stds'][idx]],
'durations' : [database['durations'][idx]],
'energies' : [database['energies'][idx]],
- 'rel_energies' : rel_energy_val,
+ 'rel_energies_prev' : rel_energy_p_val,
+ 'rel_energies_next' : rel_energy_n_val,
'clip_rate' : [database['clip_rate'][idx]],
'timeouts' : timeout_val,
})
@@ -377,7 +386,7 @@ def mean_std_by_trace_part(data, transitions, name, what):
def load_run_elem(index, element, trace, by_name, by_param, by_trace):
- means, stds, durations, energies, rel_energies, clips, timeouts, sub_thresholds = mimosa_data(element)
+ means, stds, durations, energies, rel_energies_prev, rel_energies_next, clips, timeouts, sub_thresholds = mimosa_data(element)
online_means = []
online_durations = []
@@ -394,7 +403,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -407,7 +417,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -419,7 +430,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -487,16 +499,14 @@ def param_measures(name, paramdata, key, fun):
# Mean ist besseres für SSR. Da least_squares SSR optimiert
# nutzen wir hier auch Mean.
goodness = aggregate_measures(fun(pval[key]), pval[key])
- mae.append(goodness['mae'])
- rmsd.append(goodness['rmsd'])
- if 'smape' in goodness:
- smape.append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(rmsd, goodness, 'rmsd')
+ append_if_set(smape, goodness, 'smape')
ret = {
- 'mae' : np.mean(mae),
- 'rmsd' : np.mean(rmsd)
+ 'mae' : mean_or_none(mae),
+ 'rmsd' : mean_or_none(rmsd),
+ 'smape' : mean_or_none(smape)
}
- if len(smape):
- ret['smape'] = np.mean(smape)
return ret
@@ -548,10 +558,9 @@ def val_run(aggdata, split_fun, count):
validation = aggdata[pairs[i][1]]
median = np.median(training)
goodness = aggregate_measures(median, validation)
- mae.append(goodness['mae'])
- rmsd.append(goodness['rmsd'])
- if 'smape' in goodness:
- smape.append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(rmsd, goodness, 'rmsd')
+ append_if_set(smape, goodness, 'smape')
mae_mean = np.mean(mae)
rmsd_mean = np.mean(rmsd)
@@ -628,7 +637,8 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
isa = by_name[name]['isa']
by_name[name]['means'] = np.array(by_name[name]['means'])
by_name[name]['energies'] = np.array(by_name[name]['energies'])
- by_name[name]['rel_energies'] = np.array(by_name[name]['rel_energies'])
+ by_name[name]['rel_energies_prev'] = np.array(by_name[name]['rel_energies_prev'])
+ by_name[name]['rel_energies_next'] = np.array(by_name[name]['rel_energies_next'])
by_name[name]['durations'] = np.array(by_name[name]['durations'])
if isa == 'state':
@@ -641,10 +651,14 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
print('%16s, static energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_kfold, 10)
print('%16s, static energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies'], splitidx_srs, 200)
- print('%16s, static rel_energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies'], splitidx_kfold, 10)
- print('%16s, static rel_energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_srs, 200)
+ print('%16s, static rel_energy_p, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_kfold, 10)
+ print('%16s, static rel_energy_p, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_srs, 200)
+ print('%16s, static rel_energy_n, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_kfold, 10)
+ print('%16s, static rel_energy_n, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_srs, 200)
print('%16s, static duration, Monte Carlo: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_kfold, 10)
@@ -701,11 +715,16 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'user', 'pJ')
if 'estimate' in model[isa][name]['energy']['function']:
val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'estimate', 'pJ')
- if 'rel_energy' in model[isa][name] and 'function' in model[isa][name]['rel_energy']:
- if 'user' in model[isa][name]['rel_energy']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies', 'rel_energy', 'user', 'pJ')
- if 'estimate' in model[isa][name]['rel_energy']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies', 'rel_energy', 'estimate', 'pJ')
+ if 'rel_energy_prev' in model[isa][name] and 'function' in model[isa][name]['rel_energy_prev']:
+ if 'user' in model[isa][name]['rel_energy_prev']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'user', 'pJ')
+ if 'estimate' in model[isa][name]['rel_energy_prev']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'estimate', 'pJ')
+ if 'rel_energy_next' in model[isa][name] and 'function' in model[isa][name]['rel_energy_next']:
+ if 'user' in model[isa][name]['rel_energy_next']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'user', 'pJ')
+ if 'estimate' in model[isa][name]['rel_energy_next']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'estimate', 'pJ')
return
for i, param in enumerate(parameters):
@@ -819,11 +838,18 @@ def validate(by_name, by_param, parameters):
'std_inner' : np.std(val['energies']),
'function' : {},
},
- 'rel_energy' : {
- 'goodness' : aggregate_measures(model['rel_energy']['static'], val['rel_energies']),
- 'median' : np.median(val['rel_energies']),
- 'mean' : np.mean(val['rel_energies']),
- 'std_inner' : np.std(val['rel_energies']),
+ 'rel_energy_prev' : {
+ 'goodness' : aggregate_measures(model['rel_energy_prev']['static'], val['rel_energies_prev']),
+ 'median' : np.median(val['rel_energies_prev']),
+ 'mean' : np.mean(val['rel_energies_prev']),
+ 'std_inner' : np.std(val['rel_energies_prev']),
+ 'function' : {},
+ },
+ 'rel_energy_next' : {
+ 'goodness' : aggregate_measures(model['rel_energy_next']['static'], val['rel_energies_next']),
+ 'median' : np.median(val['rel_energies_next']),
+ 'mean' : np.mean(val['rel_energies_next']),
+ 'std_inner' : np.std(val['rel_energies_next']),
'function' : {},
},
'clip' : {
@@ -874,7 +900,8 @@ def analyze(by_name, by_param, by_trace, parameters):
aggval['power']['std_outer'] = np.mean(val['stds'])
if isa == 'transition':
- aggval['rel_energy'] = keydata(name, val, by_param, by_trace, 'rel_energies')
+ aggval['rel_energy_prev'] = keydata(name, val, by_param, by_trace, 'rel_energies_prev')
+ aggval['rel_energy_next'] = keydata(name, val, by_param, by_trace, 'rel_energies_next')
if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']:
aggval['timeout'] = keydata(name, val, by_param, by_trace, 'timeouts')
@@ -898,10 +925,14 @@ def analyze(by_name, by_param, by_trace, parameters):
by_param, allvalues, name, 'energies', i)
if aggval['energy']['std_by_param'][param] > 0 and aggval['energy']['std_param'] / aggval['energy']['std_by_param'][param] < 0.6:
aggval['energy']['fit_guess'][param] = try_fits(name, 'energies', i, by_param)
- aggval['rel_energy']['std_by_param'][param] = mean_std_by_param(
- by_param, allvalues, name, 'rel_energies', i)
- if aggval['rel_energy']['std_by_param'][param] > 0 and aggval['rel_energy']['std_param'] / aggval['rel_energy']['std_by_param'][param] < 0.6:
- aggval['rel_energy']['fit_guess'][param] = try_fits(name, 'rel_energies', i, by_param)
+ aggval['rel_energy_prev']['std_by_param'][param] = mean_std_by_param(
+ by_param, allvalues, name, 'rel_energies_prev', i)
+ if aggval['rel_energy_prev']['std_by_param'][param] > 0 and aggval['rel_energy_prev']['std_param'] / aggval['rel_energy_prev']['std_by_param'][param] < 0.6:
+ aggval['rel_energy_prev']['fit_guess'][param] = try_fits(name, 'rel_energies_prev', i, by_param)
+ aggval['rel_energy_next']['std_by_param'][param] = mean_std_by_param(
+ by_param, allvalues, name, 'rel_energies_next', i)
+ if aggval['rel_energy_next']['std_by_param'][param] > 0 and aggval['rel_energy_next']['std_param'] / aggval['rel_energy_next']['std_by_param'][param] < 0.6:
+ aggval['rel_energy_next']['fit_guess'][param] = try_fits(name, 'rel_energies_next', i, by_param)
if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']:
aggval['timeout']['std_by_param'][param] = mean_std_by_param(
by_param, allvalues, name, 'timeouts', i)
@@ -926,7 +957,9 @@ def analyze(by_name, by_param, by_trace, parameters):
'estimated %s duration [µs]' % name)
fguess_to_function(name, 'energies', aggval['energy'], parameters, by_param,
'estimated %s energy [pJ]' % name)
- fguess_to_function(name, 'rel_energies', aggval['rel_energy'], parameters, by_param,
+ fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], parameters, by_param,
+ 'estimated relative %s energy [pJ]' % name)
+ fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], parameters, by_param,
'estimated relative %s energy [pJ]' % name)
if 'function' in model['duration'] and 'user' in model['duration']['function']:
aggval['duration']['function']['user'] = {
@@ -944,14 +977,22 @@ def analyze(by_name, by_param, by_trace, parameters):
fit_function(
aggval['energy']['function']['user'], name, 'energies', parameters, by_param,
yaxis='%s energy [pJ]' % name)
- if 'function' in model['rel_energy'] and 'user' in model['rel_energy']['function']:
- aggval['rel_energy']['function']['user'] = {
- 'raw' : model['rel_energy']['function']['user']['raw'],
- 'params' : model['rel_energy']['function']['user']['params'],
+ if 'function' in model['rel_energy_prev'] and 'user' in model['rel_energy_prev']['function']:
+ aggval['rel_energy_prev']['function']['user'] = {
+ 'raw' : model['rel_energy_prev']['function']['user']['raw'],
+ 'params' : model['rel_energy_prev']['function']['user']['params'],
+ }
+ fit_function(
+ aggval['rel_energy_prev']['function']['user'], name, 'rel_energies_prev', parameters, by_param,
+ yaxis='%s rel_energy_prev [pJ]' % name)
+ if 'function' in model['rel_energy_next'] and 'user' in model['rel_energy_next']['function']:
+ aggval['rel_energy_next']['function']['user'] = {
+ 'raw' : model['rel_energy_next']['function']['user']['raw'],
+ 'params' : model['rel_energy_next']['function']['user']['params'],
}
fit_function(
- aggval['rel_energy']['function']['user'], name, 'rel_energies', parameters, by_param,
- yaxis='%s rel_energy [pJ]' % name)
+ aggval['rel_energy_next']['function']['user'], name, 'rel_energies_next', parameters, by_param,
+ yaxis='%s rel_energy_next [pJ]' % name)
if 'function' in model['timeout'] and 'user' in model['timeout']['function']:
fguess_to_function(name, 'timeouts', aggval['timeout'], parameters, by_param,
'estimated %s timeout [µs]' % name)
diff --git a/lib/Kratos/DFADriver.pm b/lib/Kratos/DFADriver.pm
index a3473f7..9801d99 100644
--- a/lib/Kratos/DFADriver.pm
+++ b/lib/Kratos/DFADriver.pm
@@ -469,9 +469,15 @@ sub assess_model {
$self->printf_aggr( $transition, 'energy', 'pJ' );
$self->printf_parameterized( $transition, 'energy' );
$self->printf_fit( $transition, 'energy', 'pJ' );
- $self->printf_aggr( $transition, 'rel_energy', 'pJ' );
- $self->printf_parameterized( $transition, 'rel_energy' );
- $self->printf_fit( $transition, 'rel_energy', 'pJ' );
+ $self->printf_aggr( $transition, 'rel_energy_prev', 'pJ' );
+ $self->printf_parameterized( $transition, 'rel_energy_prev' );
+ $self->printf_fit( $transition, 'rel_energy_prev', 'pJ' );
+
+ if ( exists $transition->{rel_energy_next}{median} ) {
+ $self->printf_aggr( $transition, 'rel_energy_next', 'pJ' );
+ $self->printf_parameterized( $transition, 'rel_energy_next' );
+ $self->printf_fit( $transition, 'rel_energy_next', 'pJ' );
+ }
if ( exists $transition->{timeout}{median} ) {
$self->printf_aggr( $transition, 'timeout', 'µs' );
@@ -506,12 +512,14 @@ sub assess_model_tex {
printf("\n%20s", $name);
$self->printf_aggr_tex( $transition, 'energy', '\uJ', 1e6 );
- $self->printf_aggr_tex( $transition, 'rel_energy', '\uJ', 1e6 );
+ $self->printf_aggr_tex( $transition, 'rel_energy_prev', '\uJ', 1e6 );
+ $self->printf_aggr_tex( $transition, 'rel_energy_next', '\uJ', 1e6 );
$self->printf_aggr_tex( $transition, 'duration', 'ms', 1e3 );
$self->printf_count_tex( $transition, 'energy' );
print " \\\\";
$self->printf_eval_tex( $transition, 'energy', '\uJ', 1e6 );
- $self->printf_eval_tex( $transition, 'rel_energy', '\uJ', 1e6 );
+ $self->printf_eval_tex( $transition, 'rel_energy_prev', '\uJ', 1e6 );
+ $self->printf_eval_tex( $transition, 'rel_energy_next', '\uJ', 1e6 );
$self->printf_eval_tex( $transition, 'duration', 'ms', 1e3 );
$self->printf_count_tex;
print " \\\\";
@@ -548,11 +556,14 @@ sub assess_validation {
$self->model->get_transition_by_name($name)->{energy}{static},
$transition, 'energy', 'pJ' );
$self->printf_goodness(
- $self->model->get_transition_by_name($name)->{rel_energy}{static},
- $transition, 'rel_energy', 'pJ' );
+ $self->model->get_transition_by_name($name)->{rel_energy_prev}{static},
+ $transition, 'rel_energy_prev', 'pJ' );
+ if ( exists $transition->{rel_energy_next}{median} ) {
+ $self->printf_goodness(
+ $self->model->get_transition_by_name($name)->{rel_energy_next}{static},
+ $transition, 'rel_energy_next', 'pJ' );
+ }
if ( exists $transition->{timeout}{median} ) {
-
- #$self->printf_goodness('?', $transition, 'timeout', 'µs');
$self->printf_fit( $transition, 'timeout', 'µs' );
}
}
@@ -578,9 +589,10 @@ sub update_model {
$name,
$transition->{duration}{median},
$transition->{energy}{median},
- $transition->{rel_energy}{median}
+ $transition->{rel_energy_prev}{median},
+ $transition->{rel_energy_next}{median}
);
- for my $key (qw(duration energy rel_energy timeout)) {
+ for my $key (qw(duration energy rel_energy_prev rel_energy_next timeout)) {
for my $fname ( keys %{ $transition->{$key}{function} } ) {
$self->model->set_transition_params(
$name, $key, $fname,
@@ -698,7 +710,7 @@ EOF
advice ${adv_type}("% ${class_name}::$transition->{name}(...)") ${ignore_nested} : after() {
tjp->target()->passTransition(${class_name}::statepower[tjp->target()->state],
- $transition->{rel_energy}{static}, $transition->{id},
+ $transition->{rel_energy_prev}{static}, $transition->{id},
${dest_state_id});
};
@@ -709,7 +721,7 @@ EOF
advice execution("% ${class_name}::$transition->{name}(...)") : after() {
tjp->target()->passTransition(${class_name}::statepower[tjp->target()->state],
- $transition->{rel_energy}{static}, $transition->{id},
+ $transition->{rel_energy_prev}{static}, $transition->{id},
${dest_state_id});
};
diff --git a/lib/Kratos/DFADriver/Model.pm b/lib/Kratos/DFADriver/Model.pm
index 67fb318..bf57c49 100644
--- a/lib/Kratos/DFADriver/Model.pm
+++ b/lib/Kratos/DFADriver/Model.pm
@@ -117,17 +117,18 @@ sub parse_xml {
}
my $transition = {
- name => $transition_node->getAttribute('name'),
- duration => { static => 0+($transition_node->getAttribute('duration') // 0) },
- energy => { static => 0+($transition_node->getAttribute('energy') // 0) },
- rel_energy => { static => 0+($transition_node->getAttribute('rel_energy') // 0) },
- parameters => [@parameters],
- origins => [@source_states],
- destination => $dst_node->textContent,
- level => $level_node->textContent,
- id => $transition_index,
- affects => {%affects},
- node => $transition_node,
+ name => $transition_node->getAttribute('name'),
+ duration => { static => 0+($transition_node->getAttribute('duration') // 0) },
+ energy => { static => 0+($transition_node->getAttribute('energy') // 0) },
+ rel_energy_prev => { static => 0+($transition_node->getAttribute('rel_energy_prev') // 0) },
+ rel_energy_next => { static => 0+($transition_node->getAttribute('rel_energy_next') // 0) },
+ parameters => [@parameters],
+ origins => [@source_states],
+ destination => $dst_node->textContent,
+ level => $level_node->textContent,
+ id => $transition_index,
+ affects => {%affects},
+ node => $transition_node,
};
for my $fun_node ( $transition_node->findnodes('./timeoutfunction/*') )
@@ -184,18 +185,36 @@ sub parse_xml {
}
}
- for my $fun_node ( $transition_node->findnodes('./rel_energyfunction/*') )
+ for my $fun_node ( $transition_node->findnodes('./rel_energy_prevfunction/*') )
{
my $name = $fun_node->nodeName;
my $function = $fun_node->textContent;
$function =~ s{^ \n* \s* }{}x;
$function =~ s{\s* \n* $}{}x;
- $transition->{rel_energy}{function}{$name}{raw} = $function;
- $transition->{rel_energy}{function}{$name}{node} = $fun_node;
+ $transition->{rel_energy_prev}{function}{$name}{raw} = $function;
+ $transition->{rel_energy_prev}{function}{$name}{node} = $fun_node;
my $attrindex = 0;
while ( $fun_node->hasAttribute("param${attrindex}") ) {
push(
- @{ $transition->{rel_energy}{function}{$name}{params} },
+ @{ $transition->{rel_energy_prev}{function}{$name}{params} },
+ $fun_node->getAttribute("param${attrindex}")
+ );
+ $attrindex++;
+ }
+ }
+
+ for my $fun_node ( $transition_node->findnodes('./rel_energy_nextfunction/*') )
+ {
+ my $name = $fun_node->nodeName;
+ my $function = $fun_node->textContent;
+ $function =~ s{^ \n* \s* }{}x;
+ $function =~ s{\s* \n* $}{}x;
+ $transition->{rel_energy_next}{function}{$name}{raw} = $function;
+ $transition->{rel_energy_next}{function}{$name}{node} = $fun_node;
+ my $attrindex = 0;
+ while ( $fun_node->hasAttribute("param${attrindex}") ) {
+ push(
+ @{ $transition->{rel_energy_next}{function}{$name}{params} },
$fun_node->getAttribute("param${attrindex}")
);
$attrindex++;
@@ -249,7 +268,8 @@ sub reset {
for my $transition (@{$self->{transitions}}) {
$transition->{node}->removeAttribute('duration');
$transition->{node}->removeAttribute('energy');
- $transition->{node}->removeAttribute('rel_energy');
+ $transition->{node}->removeAttribute('rel_energy_prev');
+ $transition->{node}->removeAttribute('rel_energy_next');
for my $list_node (@{$transition->{node}->findnodes('./timeoutfunction')}) {
for my $fun_name (keys %{$transition->{timeout}{function}}) {
my $fun_node = $transition->{timeout}{function}{$fun_name}{node};
@@ -366,7 +386,7 @@ sub set_transition_params {
}
sub set_transition_data {
- my ( $self, $transition_name, $duration, $energy, $rel_energy ) = @_;
+ my ( $self, $transition_name, $duration, $energy, $rel_energy_prev, $rel_energy_next ) = @_;
my $transition = $self->get_transition_by_name($transition_name);
$duration = sprintf( '%.f', $duration );
@@ -383,17 +403,23 @@ sub set_transition_data {
$transition->{energy}{static} = $energy;
$transition->{node}->setAttribute( 'energy', $energy );
- if (defined $rel_energy) {
- $rel_energy = sprintf('%.f', $rel_energy);
- printf( ", relative energy %d -> %d pJ\n",
- $transition->{rel_energy}{static}, $rel_energy );
+ if (defined $rel_energy_prev) {
+ $rel_energy_prev = sprintf('%.f', $rel_energy_prev);
+ printf( ", relative_prev energy %d -> %d pJ",
+ $transition->{rel_energy_prev}{static}, $rel_energy_prev );
- $transition->{rel_energy}{static} = $rel_energy;
- $transition->{node}->setAttribute( 'rel_energy', $rel_energy );
+ $transition->{rel_energy_prev}{static} = $rel_energy_prev;
+ $transition->{node}->setAttribute( 'rel_energy_prev', $rel_energy_prev );
}
- else {
- print("\n");
+ if (defined $rel_energy_next) {
+ $rel_energy_next = sprintf('%.f', $rel_energy_next);
+ printf( ", relative_next energy %d -> %d pJ",
+ $transition->{rel_energy_next}{static}, $rel_energy_next );
+
+ $transition->{rel_energy_next}{static} = $rel_energy_next;
+ $transition->{node}->setAttribute( 'rel_energy_next', $rel_energy_next );
}
+ print("\n");
}
sub save {
@@ -530,7 +556,7 @@ sub TO_JSON {
}
for my $val ( values %transition_copy ) {
delete $val->{node};
- for my $key (qw(duration energy rel_energy timeout)) {
+ for my $key (qw(duration energy rel_energy_prev rel_energy_next timeout)) {
if ( exists $val->{$key}{function} ) {
$val->{$key} = { %{ $val->{$key} } };
$val->{$key}{function} = { %{ $val->{$key}{function} } };
diff --git a/lib/MIMOSA/Log.pm b/lib/MIMOSA/Log.pm
index 4f7c6a2..8574132 100644
--- a/lib/MIMOSA/Log.pm
+++ b/lib/MIMOSA/Log.pm
@@ -14,7 +14,7 @@ use List::Util qw(sum);
#use Statistics::Basic::StdDev;
our $VERSION = '0.00';
-my $CACHE_VERSION = 5;
+my $CACHE_VERSION = 6;
sub new {
my ( $class, %opt ) = @_;
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 8a07b50..994f8a2 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -21,12 +21,23 @@ def is_numeric(n):
except ValueError:
return False
+def append_if_set(aggregate, data, key):
+ if key in data:
+ aggregate.append(data[key])
+
+def mean_or_none(arr):
+ if len(arr):
+ return np.mean(arr)
+ return -1
+
def aggregate_measures(aggregate, actual):
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted, actual):
deviations = predicted - actual
+ if len(deviations) == 0:
+ return {}
measures = {
'mae' : np.mean(np.abs(deviations), dtype=np.float64),
'msd' : np.mean(deviations**2, dtype=np.float64),
@@ -281,8 +292,14 @@ class MIMOSA:
if isa == 'transition':
# subtract average power of previous state
# (that is, the state from which this transition originates)
- data['uW_mean_delta'] = data['uW_mean'] - iterdata[-1]['uW_mean']
+ data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
+ # placeholder to avoid extra cases in the analysis
+ data['uW_mean_delta_next'] = data['uW_mean']
data['timeout'] = iterdata[-1]['us']
+ elif len(iterdata) > 0:
+ # subtract average power of next state
+ # (the state into which this transition leads)
+ iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']
iterdata.append(data)