diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2019-09-23 15:19:11 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2019-09-23 15:19:11 +0200 |
commit | 3f631ac30c42751daaca6255da02d5b76de077c9 (patch) | |
tree | c2572985909bac993e8e80a36161eced0a7df38d | |
parent | ea89af21e3d9cc9b8ff856105aa36698881ef565 (diff) |
Fix model generation on legacy data format
A bug introduced by 3b624b1bb4e3614d5befbe5b367d1506dad3c933 caused traces
to be duplicated in a not entirely predictable manner, occasionally affecting
model data.
-rwxr-xr-x | lib/dfatool.py | 53 |
1 files changed, 39 insertions, 14 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index c81ae0a..68146ae 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -360,12 +360,14 @@ def _preprocess_measurement(measurement): 'triggers' : len(trigidx), 'first_trig' : trigidx[0] * 10, 'calibration' : caldata, - 'trace' : mim.analyze_states(charges, trigidx, vcalfunc), - 'expected_trace' : measurement['expected_trace'], + 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc), 'has_mimosa_error' : mim.is_error, 'mimosa_errors' : mim.errors, } + if 'expected_trace' in measurement: + processed_data['expected_trace'] = measurement['expected_trace'] + return processed_data class ParamStats: @@ -656,7 +658,9 @@ class RawData: 'triggers' : len(trigidx), 'first_trig' : trigidx[0] * 10, 'calibration' : caldata, - 'trace' : mim.analyze_states(charges, trigidx, vcalfunc) + 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc) + A sequence of unnamed, unparameterized states and transitions with + energy and timing data 'expected_trace' : trace from PTA DFS (with parameter data) mim.analyze_states returns a list of (alternating) states and transitions. Each element is a dict containing: @@ -674,7 +678,10 @@ class RawData: - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands """ setup = self.setup_by_fileno[processed_data['fileno']] - traces = processed_data['expected_trace'] + if 'expected_trace' in processed_data: + traces = processed_data['expected_trace'] + else: + traces = self.traces_by_fileno[processed_data['fileno']] state_duration = setup['state_duration'] # Check MIMOSA error @@ -703,7 +710,7 @@ class RawData: online_datapoints.append((run_idx, trace_part_idx)) for offline_idx, online_ref in enumerate(online_datapoints): online_run_idx, online_trace_part_idx = online_ref - offline_trace_part = processed_data['trace'][offline_idx] + offline_trace_part = processed_data['energy_trace'][offline_idx] online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx] if self._parameter_names == None: @@ -763,14 +770,21 @@ class RawData: return True def _merge_online_and_offline(self, measurement): + # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline'] + # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place + # (appends data from measurement['energy_trace']) + # If measurement['expected_trace'] exists, it is edited in place instead online_datapoints = [] - traces = measurement['expected_trace'].copy() + if 'expected_trace' in measurement: + traces = measurement['expected_trace'] + else: + traces = self.traces_by_fileno[measurement['fileno']] for run_idx, run in enumerate(traces): for trace_part_idx in range(len(run['trace'])): online_datapoints.append((run_idx, trace_part_idx)) for offline_idx, online_ref in enumerate(online_datapoints): online_run_idx, online_trace_part_idx = online_ref - offline_trace_part = measurement['trace'][offline_idx] + offline_trace_part = measurement['energy_trace'][offline_idx] online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx] if not 'offline' in online_trace_part: @@ -823,7 +837,6 @@ class RawData: offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20)) online_trace_part['offline_aggregates']['timeout'].append( offline_trace_part['timeout']) - return traces def _concatenate_traces(self, list_of_traces): trace_output = list() @@ -914,7 +927,6 @@ class RawData: 'fileno' : i, 'info' : member, 'setup' : self.setup_by_fileno[i], - 'expected_trace' : self.traces_by_fileno[i], }) elif version == 1: @@ -922,6 +934,8 @@ class RawData: traces_by_file = list() mim_files_by_file = list() with tarfile.open(filename) as tf: + # Relies on generate-dfa-benchmark placing the .mim files + # in the order they were created (i.e., lexically sorted) for member in tf.getmembers(): _, extension = os.path.splitext(member.name) if extension == '.mim': @@ -931,8 +945,16 @@ class RawData: }) elif extension == '.json': ptalog = json.load(tf.extractfile(member)) + + # ptalog['traces'] is a list of lists. + # The first level corresponds to the individual .mim files: + # ptalog['traces'][0] contains all traces belonging to the + # first .mim file in the archive. + # The second level holds the individual runs in this + # sub-benchmark, so ptalog['traces'][0][0] is the first + # run, ptalog['traces'][0][1] the second, and so on + traces_by_file.extend(ptalog['traces']) - self.traces_by_fileno.append(self._concatenate_traces(traces_by_file)) self.setup_by_fileno.append({ 'mimosa_voltage' : ptalog['configs'][0]['voltage'], 'mimosa_shunt' : ptalog['configs'][0]['shunt'], @@ -953,16 +975,16 @@ class RawData: if version == 0: # Strip the last state (it is not part of the scheduled measurement) - measurement['trace'].pop() + measurement['energy_trace'].pop() repeat = 0 elif version == 1: # The first online measurement is the UNINITIALIZED state. In v1, # it is not part of the expected PTA trace -> remove it. - measurement['trace'].pop(0) + measurement['energy_trace'].pop(0) repeat = ptalog['opt']['repeat'] if self._measurement_is_valid_01(measurement, repeat): - valid_traces.append(self._merge_online_and_offline(measurement)) + self._merge_online_and_offline(measurement) num_valid += 1 else: vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format( @@ -972,7 +994,10 @@ class RawData: vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format( num_valid = num_valid, num_total = len(measurements))) - self.traces = self._concatenate_traces(valid_traces) + if version == 0: + self.traces = self._concatenate_traces(self.traces_by_fileno) + elif version == 1: + self.traces = self._concatenate_traces(map(lambda x: x['expected_trace'], measurements)) self.preprocessing_stats = { 'num_runs' : len(measurements), 'num_valid' : num_valid |