summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-05-28 15:44:08 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-05-28 15:44:08 +0200
commitca63a62663dbbefc854e7ed629e35cd06defb637 (patch)
treec33abba68901425b123f3f1e2cc94f12e0026cfc
parent52b214e4566bbfc4458240ed130b7320beb12bfb (diff)
bin: rename opts to opt, as it is a dict
-rwxr-xr-xbin/analyze-archive.py70
-rwxr-xr-xbin/analyze-timing.py60
-rwxr-xr-xbin/eval-outlier-removal.py12
-rwxr-xr-xbin/eval-rel-energy.py26
-rwxr-xr-xbin/test_corrcoef.py34
5 files changed, 101 insertions, 101 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index d248d1b..2044731 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -107,7 +107,7 @@ from dfatool.dfatool import CrossValidator
from dfatool.utils import filter_aggregate_by_param
from dfatool.automata import PTA
-opts = {}
+opt = dict()
def print_model_quality(results):
@@ -302,57 +302,57 @@ if __name__ == "__main__":
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
- opts[optname] = parameter
+ opt[optname] = parameter
- if "ignored-trace-indexes" in opts:
+ if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
- map(int, opts["ignored-trace-indexes"].split(","))
+ map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
- if "discard-outliers" in opts:
- discard_outliers = float(opts["discard-outliers"])
+ if "discard-outliers" in opt:
+ discard_outliers = float(opt["discard-outliers"])
- if "function-override" in opts:
- for function_desc in opts["function-override"].split(";"):
+ if "function-override" in opt:
+ for function_desc in opt["function-override"].split(";"):
state_or_tran, attribute, *function_str = function_desc.split(" ")
function_override[(state_or_tran, attribute)] = " ".join(function_str)
- if "show-models" in opts:
- show_models = opts["show-models"].split(",")
+ if "show-models" in opt:
+ show_models = opt["show-models"].split(",")
- if "show-quality" in opts:
- show_quality = opts["show-quality"].split(",")
+ if "show-quality" in opt:
+ show_quality = opt["show-quality"].split(",")
- if "cross-validate" in opts:
- xv_method, xv_count = opts["cross-validate"].split(":")
+ if "cross-validate" in opt:
+ xv_method, xv_count = opt["cross-validate"].split(":")
xv_count = int(xv_count)
- if "filter-param" in opts:
- opts["filter-param"] = list(
- map(lambda x: x.split("="), opts["filter-param"].split(","))
+ if "filter-param" in opt:
+ opt["filter-param"] = list(
+ map(lambda x: x.split("="), opt["filter-param"].split(","))
)
else:
- opts["filter-param"] = list()
+ opt["filter-param"] = list()
- if "with-safe-functions" in opts:
+ if "with-safe-functions" in opt:
safe_functions_enabled = True
- if "hwmodel" in opts:
- pta = PTA.from_file(opts["hwmodel"])
+ if "hwmodel" in opt:
+ pta = PTA.from_file(opt["hwmodel"])
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = RawData(
- args, with_traces=("export-traces" in opts or "plot-traces" in opts)
+ args, with_traces=("export-traces" in opt or "plot-traces" in opt)
)
preprocessed_data = raw_data.get_preprocessed_data()
- if "export-traces" in opts:
+ if "export-traces" in opt:
uw_per_sot = dict()
for trace in preprocessed_data:
for state_or_transition in trace["trace"]:
@@ -363,16 +363,16 @@ if __name__ == "__main__":
elem["uW"] = list(elem["uW"])
uw_per_sot[name].append(state_or_transition)
for name, data in uw_per_sot.items():
- target = f"{opts['export-traces']}/{name}.json"
+ target = f"{opt['export-traces']}/{name}.json"
print(f"exporting {target} ...")
with open(target, "w") as f:
json.dump(data, f)
- if "plot-traces" in opts:
+ if "plot-traces" in opt:
traces = list()
for trace in preprocessed_data:
for state_or_transition in trace["trace"]:
- if state_or_transition["name"] == opts["plot-traces"]:
+ if state_or_transition["name"] == opt["plot-traces"]:
traces.extend(
map(lambda x: x["uW"], state_or_transition["offline"])
)
@@ -380,7 +380,7 @@ if __name__ == "__main__":
traces,
xlabel="t [1e-5 s]",
ylabel="P [uW]",
- title=opts["plot-traces"],
+ title=opt["plot-traces"],
family=True,
)
@@ -395,7 +395,7 @@ if __name__ == "__main__":
preprocessed_data, ignored_trace_indexes
)
- filter_aggregate_by_param(by_name, parameters, opts["filter-param"])
+ filter_aggregate_by_param(by_name, parameters, opt["filter-param"])
model = PTAModel(
by_name,
@@ -410,7 +410,7 @@ if __name__ == "__main__":
if xv_method:
xv = CrossValidator(PTAModel, by_name, parameters, arg_count)
- if "param-info" in opts:
+ if "param-info" in opt:
for state in model.states():
print("{}:".format(state))
for param in model.parameters():
@@ -428,8 +428,8 @@ if __name__ == "__main__":
)
)
- if "plot-unparam" in opts:
- for kv in opts["plot-unparam"].split(";"):
+ if "plot-unparam" in opt:
+ for kv in opt["plot-unparam"].split(";"):
state_or_trans, attribute, ylabel = kv.split(":")
fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute)
plotter.plot_y(
@@ -677,8 +677,8 @@ if __name__ == "__main__":
]
)
- if "plot-param" in opts:
- for kv in opts["plot-param"].split(";"):
+ if "plot-param" in opt:
+ for kv in opt["plot-param"].split(";"):
state_or_trans, attribute, param_name, *function = kv.split(" ")
if len(function):
function = gplearn_to_function(" ".join(function))
@@ -692,12 +692,12 @@ if __name__ == "__main__":
extra_function=function,
)
- if "export-energymodel" in opts:
+ if "export-energymodel" in opt:
if not pta:
print("[E] --export-energymodel requires --hwmodel to be set")
sys.exit(1)
json_model = model.to_json()
- with open(opts["export-energymodel"], "w") as f:
+ with open(opt["export-energymodel"], "w") as f:
json.dump(json_model, f, indent=2, sort_keys=True)
sys.exit(0)
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index e565c8f..4039f45 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -84,7 +84,7 @@ from dfatool.dfatool import CrossValidator
from dfatool.utils import filter_aggregate_by_param
from dfatool.parameters import prune_dependent_parameters
-opts = {}
+opt = dict()
def print_model_quality(results):
@@ -193,49 +193,49 @@ if __name__ == "__main__":
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
- opts[optname] = parameter
+ opt[optname] = parameter
- if "ignored-trace-indexes" in opts:
+ if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
- map(int, opts["ignored-trace-indexes"].split(","))
+ map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
- if "discard-outliers" in opts:
- discard_outliers = float(opts["discard-outliers"])
+ if "discard-outliers" in opt:
+ discard_outliers = float(opt["discard-outliers"])
- if "function-override" in opts:
- for function_desc in opts["function-override"].split(";"):
+ if "function-override" in opt:
+ for function_desc in opt["function-override"].split(";"):
state_or_tran, attribute, *function_str = function_desc.split(" ")
function_override[(state_or_tran, attribute)] = " ".join(function_str)
- if "show-models" in opts:
- show_models = opts["show-models"].split(",")
+ if "show-models" in opt:
+ show_models = opt["show-models"].split(",")
- if "show-quality" in opts:
- show_quality = opts["show-quality"].split(",")
+ if "show-quality" in opt:
+ show_quality = opt["show-quality"].split(",")
- if "cross-validate" in opts:
- xv_method, xv_count = opts["cross-validate"].split(":")
+ if "cross-validate" in opt:
+ xv_method, xv_count = opt["cross-validate"].split(":")
xv_count = int(xv_count)
- if "with-safe-functions" in opts:
+ if "with-safe-functions" in opt:
safe_functions_enabled = True
- if "hwmodel" in opts:
- with open(opts["hwmodel"], "r") as f:
+ if "hwmodel" in opt:
+ with open(opt["hwmodel"], "r") as f:
hwmodel = json.load(f)
- if "corrcoef" not in opts:
- opts["corrcoef"] = False
+ if "corrcoef" not in opt:
+ opt["corrcoef"] = False
- if "filter-param" in opts:
- opts["filter-param"] = list(
- map(lambda x: x.split("="), opts["filter-param"].split(","))
+ if "filter-param" in opt:
+ opt["filter-param"] = list(
+ map(lambda x: x.split("="), opt["filter-param"].split(","))
)
else:
- opts["filter-param"] = list()
+ opt["filter-param"] = list()
except getopt.GetoptError as err:
print(err)
@@ -250,20 +250,20 @@ if __name__ == "__main__":
prune_dependent_parameters(by_name, parameters)
- filter_aggregate_by_param(by_name, parameters, opts["filter-param"])
+ filter_aggregate_by_param(by_name, parameters, opt["filter-param"])
model = AnalyticModel(
by_name,
parameters,
arg_count,
- use_corrcoef=opts["corrcoef"],
+ use_corrcoef=opt["corrcoef"],
function_override=function_override,
)
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
- if "param-info" in opts:
+ if "param-info" in opt:
for state in model.names:
print("{}:".format(state))
for param in model.parameters:
@@ -273,8 +273,8 @@ if __name__ == "__main__":
)
)
- if "plot-unparam" in opts:
- for kv in opts["plot-unparam"].split(";"):
+ if "plot-unparam" in opt:
+ for kv in opt["plot-unparam"].split(";"):
state_or_trans, attribute, ylabel = kv.split(":")
fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute)
plotter.plot_y(
@@ -456,8 +456,8 @@ if __name__ == "__main__":
[static_quality, analytic_quality, lut_quality], [None, param_info, None]
)
- if "plot-param" in opts:
- for kv in opts["plot-param"].split(";"):
+ if "plot-param" in opt:
+ for kv in opt["plot-param"].split(";"):
state_or_trans, attribute, param_name, *function = kv.split(" ")
if len(function):
function = gplearn_to_function(" ".join(function))
diff --git a/bin/eval-outlier-removal.py b/bin/eval-outlier-removal.py
index d8b0e9d..14f0e60 100755
--- a/bin/eval-outlier-removal.py
+++ b/bin/eval-outlier-removal.py
@@ -5,7 +5,7 @@ import re
import sys
from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate
-opts = {}
+opt = dict()
def model_quality_table(result_lists, info_list):
@@ -63,17 +63,17 @@ if __name__ == "__main__":
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
- opts[optname] = parameter
+ opt[optname] = parameter
- if "ignored-trace-indexes" in opts:
+ if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
- map(int, opts["ignored-trace-indexes"].split(","))
+ map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
- if "discard-outliers" in opts:
- discard_outliers = float(opts["discard-outliers"])
+ if "discard-outliers" in opt:
+ discard_outliers = float(opt["discard-outliers"])
except getopt.GetoptError as err:
print(err)
diff --git a/bin/eval-rel-energy.py b/bin/eval-rel-energy.py
index 44db226..8a2be13 100755
--- a/bin/eval-rel-energy.py
+++ b/bin/eval-rel-energy.py
@@ -5,7 +5,7 @@ import re
import sys
from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate
-opts = {}
+opt = dict()
def get_file_groups(args):
@@ -38,32 +38,32 @@ if __name__ == "__main__":
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
- opts[optname] = parameter
+ opt[optname] = parameter
- if "ignored-trace-indexes" in opts:
+ if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
- map(int, opts["ignored-trace-indexes"].split(","))
+ map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
- if "discard-outliers" in opts:
- discard_outliers = float(opts["discard-outliers"])
+ if "discard-outliers" in opt:
+ discard_outliers = float(opt["discard-outliers"])
- if "function-override" in opts:
- for function_desc in opts["function-override"].split(";"):
+ if "function-override" in opt:
+ for function_desc in opt["function-override"].split(";"):
state_or_tran, attribute, *function_str = function_desc.split(" ")
function_override[(state_or_tran, attribute)] = " ".join(
function_str
)
- if "show-models" in opts:
- show_models = opts["show-models"].split(",")
+ if "show-models" in opt:
+ show_models = opt["show-models"].split(",")
- if "show-quality" in opts:
- show_quality = opts["show-quality"].split(",")
+ if "show-quality" in opt:
+ show_quality = opt["show-quality"].split(",")
- if "with-safe-functions" in opts:
+ if "with-safe-functions" in opt:
safe_functions_enabled = True
except getopt.GetoptError as err:
diff --git a/bin/test_corrcoef.py b/bin/test_corrcoef.py
index e389d01..0b1ca54 100755
--- a/bin/test_corrcoef.py
+++ b/bin/test_corrcoef.py
@@ -7,7 +7,7 @@ from dfatool import plotter
from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate
from dfatool.dfatool import gplearn_to_function
-opts = {}
+opt = dict()
def print_model_quality(results):
@@ -126,32 +126,32 @@ if __name__ == "__main__":
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
- opts[optname] = parameter
+ opt[optname] = parameter
- if "ignored-trace-indexes" in opts:
+ if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
- map(int, opts["ignored-trace-indexes"].split(","))
+ map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
- if "discard-outliers" in opts:
- discard_outliers = float(opts["discard-outliers"])
+ if "discard-outliers" in opt:
+ discard_outliers = float(opt["discard-outliers"])
- if "function-override" in opts:
- for function_desc in opts["function-override"].split(";"):
+ if "function-override" in opt:
+ for function_desc in opt["function-override"].split(";"):
state_or_tran, attribute, *function_str = function_desc.split(" ")
function_override[(state_or_tran, attribute)] = " ".join(
function_str
)
- if "show-models" in opts:
- show_models = opts["show-models"].split(",")
+ if "show-models" in opt:
+ show_models = opt["show-models"].split(",")
- if "show-quality" in opts:
- show_quality = opts["show-quality"].split(",")
+ if "show-quality" in opt:
+ show_quality = opt["show-quality"].split(",")
- if "with-safe-functions" in opts:
+ if "with-safe-functions" in opt:
safe_functions_enabled = True
except getopt.GetoptError as err:
@@ -184,8 +184,8 @@ if __name__ == "__main__":
use_corrcoef=True,
)
- if "plot-unparam" in opts:
- for kv in opts["plot-unparam"].split(";"):
+ if "plot-unparam" in opt:
+ for kv in opt["plot-unparam"].split(";"):
state_or_trans, attribute = kv.split(" ")
plotter.plot_y(model.by_name[state_or_trans][attribute])
@@ -299,8 +299,8 @@ if __name__ == "__main__":
print("heuristic:")
model_summary_table([ref_static_quality, ref_analytic_quality, ref_lut_quality])
- if "plot-param" in opts:
- for kv in opts["plot-param"].split(";"):
+ if "plot-param" in opt:
+ for kv in opt["plot-param"].split(";"):
state_or_trans, attribute, param_name, *function = kv.split(" ")
if len(function):
function = gplearn_to_function(" ".join(function))