diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2020-09-16 09:04:26 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2020-09-16 09:04:26 +0200 |
commit | f0a48e3115938809f0ceec133f3c850a707e3f58 (patch) | |
tree | b2c92855ef352957d56c0d17923cd3a8cb81f3f0 | |
parent | d3a4e84f513beeeeda71cf451ed7b2b71808ba80 (diff) |
kconfig model: json import
-rwxr-xr-x | bin/analyze-kconfig.py | 50 | ||||
-rw-r--r-- | lib/loader.py | 23 | ||||
-rw-r--r-- | lib/model.py | 188 |
3 files changed, 202 insertions, 59 deletions
diff --git a/bin/analyze-kconfig.py b/bin/analyze-kconfig.py index f532a5b..87c05f7 100755 --- a/bin/analyze-kconfig.py +++ b/bin/analyze-kconfig.py @@ -11,6 +11,7 @@ import argparse import json import kconfiglib import logging +import os from dfatool.loader import KConfigAttributes from dfatool.model import KConfigModel @@ -48,7 +49,11 @@ def main(): help="Set log level", ) parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file") - parser.add_argument("experiment_root", type=str, help="Path to experiment results") + parser.add_argument( + "model", + type=str, + help="Path to experiment results directory or model.json file", + ) args = parser.parse_args() @@ -57,13 +62,16 @@ def main(): else: print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr) - data = KConfigAttributes(args.kconfig_path, args.experiment_root) - model = KConfigModel(data, args.attribute) + if os.path.isdir(args.model): + data = KConfigAttributes(args.kconfig_path, args.model) + model = KConfigModel.from_benchmark(data, args.attribute) + if args.max_stddev: + model.max_stddev = args.max_stddev + model.build_tree() - if args.max_stddev: - model.max_stddev = args.max_stddev - - model.build_tree() + else: + with open(args.model, "r") as f: + model = KConfigModel.from_json(json.load(f)) if args.export_tree: with open(args.export_tree, "w") as f: @@ -104,15 +112,27 @@ def main(): if skip: continue - model_diff = model.value_for_config(kconf2) - model.value_for_config(kconf) - if kconf_sym.choice: - print( - f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}" - ) - else: - print( - f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}" + try: + model_diff = model.value_for_config(kconf2) - model.value_for_config( + kconf ) + if kconf_sym.choice: + print( + f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}" + ) + else: + print( + f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}" + ) + except TypeError: + if kconf_sym.choice: + print( + f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model is undefined" + ) + else: + print( + f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model is undefined" + ) for changed_symbol in changed_symbols: print( f" {changed_symbol:30s} -> {kconf2.syms[changed_symbol].str_value}" diff --git a/lib/loader.py b/lib/loader.py index 3f0662e..14b7853 100644 --- a/lib/loader.py +++ b/lib/loader.py @@ -13,6 +13,7 @@ import hashlib import kconfiglib from multiprocessing import Pool from .utils import running_mean, soft_cast_int +from frozendict import frozendict logger = logging.getLogger(__name__) @@ -1953,8 +1954,9 @@ class KConfigAttributes: experiments.append((config_path, attr_path)) kconf = kconfiglib.Kconfig(kconfig_path) + self.kconf = kconf - self.symbols = sorted( + self.symbol_names = sorted( map( lambda sym: sym.name, filter( @@ -1964,17 +1966,22 @@ class KConfigAttributes: ) ) - self.data = list() + self.choice_names = sorted(map(lambda choice: choice.name, kconf.choices)) + + self.symbol = kconf.syms + self.choice = dict() + for choice in kconf.choices: + self.choice[choice.name] = choice - config_vectors = set() + self.data = list() for config_path, attr_path in experiments: kconf.load_config(config_path) with open(attr_path, "r") as f: attr = json.load(f) - config_vector = tuple( - map(lambda sym: kconf.syms[sym].tri_value == 2, self.symbols) - ) - config_vectors.add(config_vector) - self.data.append((config_vector, attr)) + config = dict.fromkeys(self.symbol_names, False) + for sym in self.symbol_names: + if kconf.syms[sym].tri_value == 2: + config[sym] = True + self.data.append((frozendict(config), attr)) diff --git a/lib/model.py b/lib/model.py index c74ebd1..348c541 100644 --- a/lib/model.py +++ b/lib/model.py @@ -1165,6 +1165,11 @@ class KConfigModel: self.value = value self.stddev = stddev + @classmethod + def from_json(cls, json_node): + node = cls(json_node["value"], json_node["stddev"]) + return node + def model(self, kconf): return self.value @@ -1174,12 +1179,21 @@ class KConfigModel: def to_json(self): return {"value": self.value, "stddev": self.stddev} - class Node: + class BoolNode: def __init__(self, symbol): self.symbol = symbol self.child_n = None self.child_y = None + @classmethod + def from_json(cls, outer_cls, json_node): + node = cls(json_node["symbol"]) + if json_node["n"]: + node.set_child_n(outer_cls._node_from_json(json_node["n"])) + if json_node["y"]: + node.set_child_y(outer_cls._node_from_json(json_node["y"])) + return node + def set_child_n(self, child_node): self.child_n = child_node @@ -1194,7 +1208,7 @@ class KConfigModel: return None def __repr__(self): - return f"<Node(n={self.child_n}, y={self.child_y})>" + return f"<BoolNode {self.symbol}, n={self.child_n}, y={self.child_y}>" def to_json(self): ret = {"symbol": self.symbol} @@ -1208,9 +1222,48 @@ class KConfigModel: ret["y"] = None return ret - def __init__(self, kconfig_benchmark, attribute): + class ChoiceNode: + def __init__(self, symbol): + self.symbol = symbol + self.choice = dict() + + @classmethod + def from_json(cls, outer_cls, json_node): + node = cls(json_node["symbol"]) + for choice_name, choice_json in json_node["choice"].items(): + node.set_child(choice_name, outer_cls._node_from_json(choice_json)) + return node + + def set_child(self, choice, node): + self.choice[choice] = node + + def model(self, kconf): + kconf_choice = next( + filter(lambda choice: choice.name == self.symbol, kconf.choices) + ) + return self.choice[kconf_choice.selection.name].model(kconf) + + def __repr__(self): + choice_names = sorted(self.choice.keys()) + choice_list = ", ".join( + map(lambda choice: f"{choice}={self.choice[choice]}", choice_names) + ) + return f"<ChoiceNode {self.symbol}, {choice_list}>" + + def to_json(self): + ret = {"symbol": self.symbol, "choice": dict()} + for choice_name, choice_node in self.choice.items(): + ret["choice"][choice_name] = choice_node.to_json() + return ret + + @classmethod + def from_benchmark(cls, kconfig_benchmark, attribute): + self = cls() self.data = kconfig_benchmark.data - self.symbols = kconfig_benchmark.symbols + self.symbols = kconfig_benchmark.symbol_names + self.choices = kconfig_benchmark.choice_names + self.symbol = kconfig_benchmark.symbol + self.choice = kconfig_benchmark.choice self.max_stddev = 10 if callable(attribute): self.attribute = "custom" @@ -1223,9 +1276,39 @@ class KConfigModel: self.attr_function = lambda x: x[1]["total"]["RAM"] else: raise ValueError("attribute must be a a function, 'rom', or 'ram'") + return self + + @classmethod + def from_json(cls, json_input: dict): + self = cls() + self.attribute = json_input["attribute"] + self.symbols = json_input["symbols"] + self.model = self._node_from_json(json_input["model"]) + return self + + @classmethod + def _node_from_json(cls, json_node): + if "choice" in json_node: + return cls.ChoiceNode.from_json(cls, json_node) + elif "n" in json_node: + return cls.BoolNode.from_json(cls, json_node) + return cls.Leaf.from_json(json_node) def build_tree(self): - self.model = self._build_tree(self.symbols, self.data, 0) + # without ChoiceNode: + # self.model = self._build_tree(self.symbols, list(), self.data, 0) + + standalone_symbols = list( + filter( + lambda sym: self.symbol[sym].choice is None + or self.symbol[sym].choice.is_optional, + self.symbols, + ) + ) + tree_choices = list( + filter(lambda choice: not self.choice[choice].is_optional, self.choices) + ) + self.model = self._build_tree(standalone_symbols, tree_choices, self.data, 0) def value_for_config(self, kconf): return self.model.model(kconf) @@ -1238,53 +1321,86 @@ class KConfigModel: } return output - def _build_tree(self, this_symbols, this_data, level): + def _build_tree(self, this_symbols, this_choices, this_data, level): rom_sizes = list(map(self.attr_function, this_data)) if np.std(rom_sizes) < self.max_stddev or len(this_symbols) == 0: return self.Leaf(np.mean(rom_sizes), np.std(rom_sizes)) - mean_stds = list() - for i, param in enumerate(this_symbols): - enabled = list(filter(lambda vrr: vrr[0][i] == True, this_data)) - disabled = list(filter(lambda vrr: vrr[0][i] == False, this_data)) + sym_stds = list() + for symbol_name in this_symbols: + enabled = list(filter(lambda vrr: vrr[0][symbol_name] == True, this_data)) + disabled = list(filter(lambda vrr: vrr[0][symbol_name] == False, this_data)) enabled_std_rom = np.std(list(map(self.attr_function, enabled))) disabled_std_rom = np.std(list(map(self.attr_function, disabled))) children = [enabled_std_rom, disabled_std_rom] if np.any(np.isnan(children)): - mean_stds.append(np.inf) + sym_stds.append(np.inf) else: - mean_stds.append(np.mean(children)) + sym_stds.append(np.mean(children)) + + choice_stds = list() + for choice in this_choices: + choice_foo = list() + choice_std = list() + num_configs = 0 + for symbol in self.choice[choice].syms: + sym_enabled = list( + filter(lambda vrr: vrr[0][symbol.name] == True, this_data) + ) + num_configs += len(sym_enabled) + choice_foo.append(sym_enabled) + choice_std.append(np.std(list(map(self.attr_function, sym_enabled)))) - symbol_index = np.argmin(mean_stds) - symbol = this_symbols[symbol_index] - enabled = list(filter(lambda vrr: vrr[0][symbol_index] == True, this_data)) - disabled = list(filter(lambda vrr: vrr[0][symbol_index] == False, this_data)) + # only split on a choice if it is present in _all_ configurations + if np.any(np.isnan(choice_std)) or num_configs != len(this_data): + choice_stds.append(np.inf) + else: + choice_stds.append(np.mean(choice_std)) - node = self.Node(symbol) + min_index = np.argmin(sym_stds + choice_stds) - new_symbols = this_symbols[:symbol_index] + this_symbols[symbol_index + 1 :] - enabled = list( - map( - lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], x[1]), - enabled, - ) - ) - disabled = list( - map( - lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], x[1]), - disabled, + if min_index < len(sym_stds): + symbol_index = min_index + symbol = this_symbols[symbol_index] + + node = self.BoolNode(symbol) + + new_symbols = this_symbols[:symbol_index] + this_symbols[symbol_index + 1 :] + + enabled = list(filter(lambda vrr: vrr[0][symbol] == True, this_data)) + disabled = list(filter(lambda vrr: vrr[0][symbol] == False, this_data)) + + logger.debug( + f"Level {level} split on {symbol} (mean std={sym_stds[symbol_index]}) has {len(enabled)} children when enabled and {len(disabled)} children when disabled" ) - ) - logger.debug( - f"Level {level} split on {symbol} has {len(enabled)} children when enabled and {len(disabled)} children when disabled" - ) - if len(enabled): - node.set_child_y(self._build_tree(new_symbols, enabled, level + 1)) - if len(disabled): - node.set_child_n(self._build_tree(new_symbols, disabled, level + 1)) + if len(enabled): + node.set_child_y( + self._build_tree(new_symbols, this_choices, enabled, level + 1) + ) + if len(disabled): + node.set_child_n( + self._build_tree(new_symbols, this_choices, disabled, level + 1) + ) + else: + choice_index = min_index - len(sym_stds) + choice = this_choices[choice_index] + node = self.ChoiceNode(choice) + + new_choices = this_choices[:choice_index] + this_choices[choice_index + 1 :] + + for sym in self.choice[choice].syms: + enabled = list(filter(lambda vrr: vrr[0][sym.name] == True, this_data)) + logger.debug( + f"Level {level} split on {choice} (mean std={choice_stds[choice_index]}) has {len(enabled)} children for {sym.name}" + ) + if len(enabled): + node.set_child( + sym.name, + self._build_tree(this_symbols, new_choices, enabled, level + 1), + ) return node |