summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2017-04-19 16:14:09 +0200
committerDaniel Friesel <derf@finalrewind.org>2017-04-19 16:14:09 +0200
commitebca0359b68fd7f82590d3334a5239bbc8c7d46f (patch)
tree86aeba201fd4ebc76c8b3e1fd4e1b40535407b71
parent97ed733b985dc7222eb75f4f890d181f86db47ae (diff)
fix crossvalidation output
-rwxr-xr-xbin/merge.py20
1 files changed, 10 insertions, 10 deletions
diff --git a/bin/merge.py b/bin/merge.py
index 9a71d62..8cf4dca 100755
--- a/bin/merge.py
+++ b/bin/merge.py
@@ -712,14 +712,14 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
if isa == 'state':
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['means'], splitidx_srs, 200)
- print('%16s, static power, Monte Carlo: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static power, Monte Carlo: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['means'], splitidx_kfold, 10)
- print('%16s, static power, 10-fold sys: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static power, 10-fold sys: MAE %8.f µW, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
else:
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_srs, 200)
- print('%16s, static energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_kfold, 10)
- print('%16s, static energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_srs, 200)
print('%16s, static rel_energy_p, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_kfold, 10)
@@ -729,9 +729,9 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_kfold, 10)
print('%16s, static rel_energy_n, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_srs, 200)
- print('%16s, static duration, Monte Carlo: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static duration, Monte Carlo: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_kfold, 10)
- print('%16s, static duration, 10-fold sys: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ print('%16s, static duration, 10-fold sys: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
def print_estimates(estimates, total):
histogram = {}
@@ -748,19 +748,19 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
def val_run_funs(by_name, by_trace, name, key1, key2, key3, unit):
mae, smape, rmsd, estimates = val_run_fun(by_name, by_trace, name, key1, key2, key3, splitidx_srs, param_mc_count)
- print('%16s, %8s %10s, Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
+ print('%16s, %8s %12s, Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
print_estimates(estimates, param_mc_count)
mae, smape, rmsd, estimates = val_run_fun(by_name, by_trace, name, key1, key2, key3, splitidx_kfold, 10)
- print('%16s, %8s %10s, 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
+ print('%16s, %8s %12s, 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
print_estimates(estimates, 10)
mae, smape, rmsd, estimates = val_run_fun_p(by_param, by_trace, name, key1, key2, key3, splitidx_srs, param_mc_count)
- print('%16s, %8s %10s, param-aware Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
+ print('%16s, %8s %12s, param-aware Monte Carlo: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
print_estimates(estimates, param_mc_count)
mae, smape, rmsd, estimates = val_run_fun_p(by_param, by_trace, name, key1, key2, key3, splitidx_kfold, 10)
- print('%16s, %8s %10s, param-aware 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
+ print('%16s, %8s %12s, param-aware 10-fold sys: MAE %8.f %s, SMAPE %6.2f%%, RMS %d' % (
name, key3, key2, np.mean(mae), unit, np.mean(smape), np.mean(rmsd)))
print_estimates(estimates, 10)