summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-08-13 15:25:50 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-08-13 15:25:50 +0200
commit59f28df24d00b79e41941b71bb6aa86e768e908a (patch)
treea9e5c182875b0294db9cb0743d7f1545de130fcd
parent134aaf9521163b33f5fe9f3c1ae6e4147ff42575 (diff)
refactor paramfit.results handling into separate helper function
-rwxr-xr-xlib/dfatool.py59
1 files changed, 29 insertions, 30 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 91f6a8a..3d8c321 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -1062,6 +1062,33 @@ def _num_args_from_by_name(by_name):
num_args[key] = len(value['args'][0])
return num_args
+def get_fit_result(results, name, attribute):
+ """
+ Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'.
+
+ Filters out results where the best function is worse (or not much better than) static mean/median estimates.
+
+ :param results: fit results as returned by `paramfit.results`
+ :param name: state/transition/... name, e.g. 'TX'
+ :param attribute: model attribute, e.g. 'duration'
+ """
+ fit_result = dict()
+ for result in results:
+ if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
+ this_result = result['result']
+ if this_result['best_rmsd'] >= min(this_result['mean_rmsd'], this_result['median_rmsd']):
+ vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
+ name, attribute, result['key'][2], this_result['best_rmsd'],
+ this_result['mean_rmsd'], this_result['median_rmsd']))
+ # See notes on depends_on_param
+ elif this_result['best_rmsd'] >= 0.8 * min(this_result['mean_rmsd'], this_result['median_rmsd']):
+ vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
+ name, attribute, result['key'][2], this_result['best_rmsd'],
+ this_result['mean_rmsd'], this_result['median_rmsd']))
+ else:
+ fit_result[result['key'][2]] = this_result
+ return fit_result
+
class AnalyticModel:
u"""
Parameter-aware analytic energy/data size/... model.
@@ -1255,21 +1282,7 @@ class AnalyticModel:
if name in self._num_args:
num_args = self._num_args[name]
for attribute in self.by_name[name]['attributes']:
- fit_result = {}
- for result in paramfit.results:
- if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
- this_result = result['result']
- if this_result['best_rmsd'] >= min(this_result['mean_rmsd'], this_result['median_rmsd']):
- vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
- name, attribute, result['key'][2], this_result['best_rmsd'],
- this_result['mean_rmsd'], this_result['median_rmsd']))
- # See notes on depends_on_param
- elif this_result['best_rmsd'] >= 0.8 * min(this_result['mean_rmsd'], this_result['median_rmsd']):
- vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
- name, attribute, result['key'][2], this_result['best_rmsd'],
- this_result['mean_rmsd'], this_result['median_rmsd']))
- else:
- fit_result[result['key'][2]] = this_result
+ fit_result = get_fit_result(paramfit.results, name, attribute)
if len(fit_result.keys()):
x = analytic.function_powerset(fit_result, self.parameters, num_args)
@@ -1626,21 +1639,7 @@ class PTAModel:
if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
num_args = self._num_args[state_or_tran]
for model_attribute in self.by_name[state_or_tran]['attributes']:
- fit_results = {}
- for result in paramfit.results:
- if result['key'][0] == state_or_tran and result['key'][1] == model_attribute:
- fit_result = result['result']
- if fit_result['best_rmsd'] >= min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
- vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
- state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
- fit_result['mean_rmsd'], fit_result['median_rmsd']))
- # See notes on depends_on_param
- elif fit_result['best_rmsd'] >= 0.8 * min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
- vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
- state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
- fit_result['mean_rmsd'], fit_result['median_rmsd']))
- else:
- fit_results[result['key'][2]] = fit_result
+ fit_results = get_fit_result(paramfit.results, state_or_tran, model_attribute)
if (state_or_tran, model_attribute) in self.function_override:
function_str = self.function_override[(state_or_tran, model_attribute)]