diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-16 08:37:59 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2021-03-16 08:37:59 +0100 |
commit | 924b96a1852faffddb24b01723833b6356d01c98 (patch) | |
tree | 2236cb34d70f5f92c4bd7deddfc585101a94a8f2 | |
parent | df33f10a6c1b7ad508014fabfeb07ee1b791f93b (diff) |
parameters: remove unused _reduce_param_matrix function
-rw-r--r-- | lib/parameters.py | 34 |
1 files changed, 0 insertions, 34 deletions
diff --git a/lib/parameters.py b/lib/parameters.py index d2fa253..0eb3d8a 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -49,40 +49,6 @@ def _depends_on_param(corr_param, std_param, std_lut): return std_lut / std_param < 0.5 -def _reduce_param_matrix(matrix: np.ndarray, parameter_names: list) -> list: - """ - :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...) - :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc. - :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not - affect (parameter)'s influence on (model attribute) -- it either always or never has an influence - """ - if np.all(matrix == True) or np.all(matrix == False): - return list() - - # Diese Abbruchbedingung scheint noch nicht so schlau zu sein... - # Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt) - # Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht) - # if not is_power_of_two(np.count_nonzero(matrix)): - # # cannot be reliably reduced to a list of parameters - # return list() - - if np.count_nonzero(matrix) == 1: - influential_parameters = list() - for i, parameter_name in enumerate(parameter_names): - if matrix.shape[i] > 1: - influential_parameters.append(parameter_name) - return influential_parameters - - for axis in range(matrix.ndim): - candidate = _reduce_param_matrix( - np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis) - ) - if len(candidate): - return candidate - - return list() - - def _std_by_param(n_by_param, all_param_values, param_index): """ Calculate standard deviations for a static model where all parameters but `param_index` are constant. |