summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2021-03-16 08:37:59 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2021-03-16 08:37:59 +0100
commit924b96a1852faffddb24b01723833b6356d01c98 (patch)
tree2236cb34d70f5f92c4bd7deddfc585101a94a8f2
parentdf33f10a6c1b7ad508014fabfeb07ee1b791f93b (diff)
parameters: remove unused _reduce_param_matrix function
-rw-r--r--lib/parameters.py34
1 files changed, 0 insertions, 34 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index d2fa253..0eb3d8a 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -49,40 +49,6 @@ def _depends_on_param(corr_param, std_param, std_lut):
return std_lut / std_param < 0.5
-def _reduce_param_matrix(matrix: np.ndarray, parameter_names: list) -> list:
- """
- :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...)
- :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc.
- :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not
- affect (parameter)'s influence on (model attribute) -- it either always or never has an influence
- """
- if np.all(matrix == True) or np.all(matrix == False):
- return list()
-
- # Diese Abbruchbedingung scheint noch nicht so schlau zu sein...
- # Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt)
- # Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht)
- # if not is_power_of_two(np.count_nonzero(matrix)):
- # # cannot be reliably reduced to a list of parameters
- # return list()
-
- if np.count_nonzero(matrix) == 1:
- influential_parameters = list()
- for i, parameter_name in enumerate(parameter_names):
- if matrix.shape[i] > 1:
- influential_parameters.append(parameter_name)
- return influential_parameters
-
- for axis in range(matrix.ndim):
- candidate = _reduce_param_matrix(
- np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis)
- )
- if len(candidate):
- return candidate
-
- return list()
-
-
def _std_by_param(n_by_param, all_param_values, param_index):
"""
Calculate standard deviations for a static model where all parameters but `param_index` are constant.