diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2019-10-11 14:40:48 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2019-10-11 14:40:48 +0200 |
commit | a2adf6a90246110fcae4e6a6dcc049d8d69fcb48 (patch) | |
tree | ec94d9e77e067e2e168467947f5fd390ed66c569 | |
parent | 2a75bc679e2970f9ae938a418af5acea9106e61d (diff) |
add helper functions for co-dependent parameter detection
-rwxr-xr-x[-rw-r--r--] | bin/analyze-archive.py | 10 | ||||
-rwxr-xr-x | bin/analyze-timing.py | 23 | ||||
-rw-r--r-- | lib/dfatool.py | 40 | ||||
-rw-r--r-- | lib/parameters.py | 212 | ||||
-rw-r--r-- | lib/utils.py | 17 |
5 files changed, 230 insertions, 72 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py index 47fabd4..685ce92 100644..100755 --- a/bin/analyze-archive.py +++ b/bin/analyze-archive.py @@ -311,10 +311,10 @@ if __name__ == '__main__': '', param, model.stats.param_dependence_ratio(state, 'power', param))) - if model.depends_on_param(state, 'power', param) and len(model.stats.stats[state]['power']['param_data'][param]['codependent_parameters']): - print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.stats[state]['power']['param_data'][param]['codependent_parameters']))) - for combi, depends in model.stats.stats[state]['power']['param_data'][param]['depends_for_codependent_value'].items(): - print('{} -> {}'.format(combi, depends)) + if model.stats.has_codependent_parameters(state, 'power', param): + print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(state, 'power', param)))) + for param_dict in model.stats.codependent_parameter_value_dicts(state, 'power', param): + print('{:24s} parameter-aware for {}'.format('', param_dict)) for trans in model.transitions(): # Mean power is not a typical transition attribute, but may be present for debugging or analysis purposes @@ -377,6 +377,8 @@ if __name__ == '__main__': )) if 'param' in show_models or 'all' in show_models: + if not model.stats.can_be_fitted(): + print('[!] measurements have insufficient distinct numeric parameters for fitting. A parameter-aware model is not available.') for state in model.states(): for attribute in model.attributes(state): if param_info(state, attribute): diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py index 659a3d7..6c84a67 100755 --- a/bin/analyze-timing.py +++ b/bin/analyze-timing.py @@ -21,6 +21,9 @@ Options: parameters. Also plots the corresponding measurements. If gplearn function is set, it is plotted using dashed lines. +--param-info + Show parameter names and values + --show-models=<static|paramdetection|param|all|tex> static: show static model values as well as parameter detection heuristic paramdetection: show stddev of static/lut/fitted model @@ -77,7 +80,8 @@ import re import sys from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate from dfatool import soft_cast_int, is_numeric, gplearn_to_function -from dfatool import CrossValidator, filter_aggregate_by_param +from dfatool import CrossValidator +from utils import filter_aggregate_by_param from parameters import prune_dependent_parameters import utils @@ -151,7 +155,7 @@ if __name__ == '__main__': 'ignored-trace-indexes= discard-outliers= function-override= ' 'filter-param= ' 'cross-validate= ' - 'corrcoef ' + 'corrcoef param-info ' 'with-safe-functions hwmodel= export-energymodel=' ) raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' ')) @@ -216,6 +220,12 @@ if __name__ == '__main__': if xv_method: xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count) + if 'param-info' in opts: + for state in model.names: + print('{}:'.format(state)) + for param in model.parameters: + print(' {} = {}'.format(param, model.stats.distinct_values[state][param])) + if 'plot-unparam' in opts: for kv in opts['plot-unparam'].split(';'): state_or_trans, attribute, ylabel = kv.split(':') @@ -228,6 +238,15 @@ if __name__ == '__main__': if 'static' in show_models or 'all' in show_models: for trans in model.names: print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration'))) + for param in model.parameters: + print('{:10s} dependence on {:15s}: {:.2f}'.format( + '', + param, + model.stats.param_dependence_ratio(trans, 'duration', param))) + if model.stats.has_codependent_parameters(trans, 'duration', param): + print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param)))) + for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param): + print('{:24s} parameter-aware for {}'.format('', param_dict)) if xv_method == 'montecarlo': static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count) diff --git a/lib/dfatool.py b/lib/dfatool.py index 478f800..a3d5c0f 100644 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -18,7 +18,7 @@ from functions import analytic from functions import AnalyticFunction from parameters import ParamStats from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple -from utils import by_name_to_by_param +from utils import by_name_to_by_param, match_parameter_values arg_support_enabled = True @@ -505,12 +505,10 @@ class RawData: self.cache_file = '{}/{}.json'.format(self.cache_dir, cache_key) def load_cache(self): - print('checking {}...'.format(self.cache_file)) if os.path.exists(self.cache_file): with open(self.cache_file, 'r') as f: self.traces = json.load(f) self.preprocessed = True - print('loaded cache') def save_cache(self): try: @@ -902,15 +900,15 @@ class ParallelParamFit: self.fit_queue = [] self.by_param = by_param - def enqueue(self, state_or_tran, attribute, param_index, param_name, safe_functions_enabled = False): + def enqueue(self, state_or_tran, attribute, param_index, param_name, safe_functions_enabled = False, param_filter = None): """ Add state_or_tran/attribute/param_name to fit queue. This causes fit() to compute the best-fitting function for this model part. """ self.fit_queue.append({ - 'key' : [state_or_tran, attribute, param_name], - 'args' : [self.by_param, state_or_tran, attribute, param_index, safe_functions_enabled] + 'key' : [state_or_tran, attribute, param_name, param_filter], + 'args' : [self.by_param, state_or_tran, attribute, param_index, safe_functions_enabled, param_filter] }) def fit(self): @@ -935,16 +933,17 @@ def _try_fits_parallel(arg): 'result' : _try_fits(*arg['args']) } - -def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False): +def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False, param_filter: dict = None): """ Determine goodness-of-fit for prediction of `by_param[(state_or_tran, *)][model_attribute]` dependence on `param_index` using various functions. This is done by varying `param_index` while keeping all other parameters constant and doing one least squares optimization for each function and for each combination of the remaining parameters. The value of the parameter corresponding to `param_index` (e.g. txpower or packet length) is the sole input to the model function. + Only numeric parameter values (as determined by `utils.is_numeric`) are used for fitting, non-numeric values such as None or enum strings are ignored. + Fitting is only performed if at least three distinct parameter values exist in `by_param[(state_or_tran, *)]`. - :return: a dictionary with the following elements: - best -- name of the best-fitting function (see `analytic.functions`) + :returns: a dictionary with the following elements: + best -- name of the best-fitting function (see `analytic.functions`). `None` in case of insufficient data. best_rmsd -- mean Root Mean Square Deviation of best-fitting function over all combinations of the remaining parameters mean_rmsd -- mean Root Mean Square Deviation of a reference model using the mean of its respective input data as model value median_rmsd -- mean Root Mean Square Deviation of a reference model using the median of its respective input data as model value @@ -961,6 +960,7 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi :param param_index: index of the parameter used as model input :param safe_functions_enabled: Include "safe" variants of functions with limited argument range. + :param param_filter: Only use measurements whose parameters match param_filter for fitting. """ functions = analytic.functions(safe_functions_enabled = safe_functions_enabled) @@ -987,7 +987,7 @@ def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functi seen_parameter_combinations = set() # for each parameter combination: - for param_key in filter(lambda x: x[0] == state_or_tran and remove_index_from_tuple(x[1], param_index) not in seen_parameter_combinations, by_param.keys()): + for param_key in filter(lambda x: x[0] == state_or_tran and remove_index_from_tuple(x[1], param_index) not in seen_parameter_combinations and len(by_param[x]['param']) and match_parameter_values(by_param[x]['param'][0], param_filter), by_param.keys()): X = [] Y = [] num_valid = 0 @@ -1087,7 +1087,7 @@ def _num_args_from_by_name(by_name): num_args[key] = len(value['args'][0]) return num_args -def get_fit_result(results, name, attribute, verbose = False): +def get_fit_result(results, name, attribute, verbose = False, param_filter: dict = None): """ Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'. @@ -1097,10 +1097,12 @@ def get_fit_result(results, name, attribute, verbose = False): :param name: state/transition/... name, e.g. 'TX' :param attribute: model attribute, e.g. 'duration' :param verbose: print debug message to stdout when deliberately not using a determined fit function + :param param_filter: + :returns: dict with fit result (see `_try_fits`) for each successfully fitted parameter. E.g. {'param 1': {'best' : 'function name', ...} } """ fit_result = dict() for result in results: - if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None: + if result['key'][0] == name and result['key'][1] == attribute and result['key'][3] == param_filter and result['result']['best'] != None: # dürfte an ['best'] != None liegen-> Fit für gefilterten Kram schlägt fehl? this_result = result['result'] if this_result['best_rmsd'] >= min(this_result['mean_rmsd'], this_result['median_rmsd']): vprint(verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format( @@ -1583,7 +1585,7 @@ class PTAModel: """ Get static model function: name, attribute -> model value. - Uses the median of by_name for modeling. + Uses the median of by_name for modeling, unless `use_mean` is set. """ getter_function = np.median @@ -1633,7 +1635,7 @@ class PTAModel: def get_fitted(self, safe_functions_enabled = False): """ - Get paramete-aware model function and model information function. + Get parameter-aware model function and model information function. Returns two functions: model_function(name, attribute, param=parameter values) -> model value. @@ -1651,6 +1653,8 @@ class PTAModel: for parameter_index, parameter_name in enumerate(self._parameter_names): if self.depends_on_param(state_or_tran, model_attribute, parameter_name): paramfit.enqueue(state_or_tran, model_attribute, parameter_index, parameter_name, safe_functions_enabled) + for codependent_param_dict in self.stats.codependent_parameter_value_dicts(state_or_tran, model_attribute, parameter_name): + paramfit.enqueue(state_or_tran, model_attribute, parameter_index, parameter_name, safe_functions_enabled, codependent_param_dict) if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition': for arg_index in range(self._num_args[state_or_tran]): if self.depends_on_arg(state_or_tran, model_attribute, arg_index): @@ -1664,6 +1668,12 @@ class PTAModel: for model_attribute in self.by_name[state_or_tran]['attributes']: fit_results = get_fit_result(paramfit.results, state_or_tran, model_attribute, self.verbose) + for parameter_name in self._parameter_names: + if self.depends_on_param(state_or_tran, model_attribute, parameter_name): + for codependent_param_dict in self.stats.codependent_parameter_value_dicts(state_or_tran, model_attribute, parameter_name): + pass + # FIXME get_fit_result hat ja gar keinen Parameter als Argument... + if (state_or_tran, model_attribute) in self.function_override: function_str = self.function_override[(state_or_tran, model_attribute)] x = AnalyticFunction(function_str, self._parameter_names, num_args) diff --git a/lib/parameters.py b/lib/parameters.py index 1518076..bc26643 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -19,8 +19,6 @@ def distinct_param_values(by_name, state_or_tran): write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. """ - # TODO a set() is an _unordered_ collection, so this must be converted to - # an OrderedDict or a list with a duplicate-pruning step distinct_values = [OrderedDict() for i in range(len(by_name[state_or_tran]['param'][0]))] for param_tuple in by_name[state_or_tran]['param']: for i in range(len(param_tuple)): @@ -32,31 +30,37 @@ def distinct_param_values(by_name, state_or_tran): def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): u""" - Calculate standard deviations for a static model where all parameters but param_index are constant. + Calculate standard deviations for a static model where all parameters but `param_index` are constant. :param by_param: measurements sorted by key/transition name and parameter values + :param all_param_values: distinct values of each parameter in `state_or_tran`. + E.g. for two parameters, the first being None, FOO, or BAR, and the second being 1, 2, 3, or 4, the argument is + `[[None, 'FOO', 'BAR'], [1, 2, 3, 4]]`. :param state_or_tran: state or transition name (-> by_param[(state_or_tran, *)]) :param attribute: model attribute, e.g. 'power' or 'duration' (-> by_param[(state_or_tran, *)][attribute]) :param param_index: index of variable parameter - :returns: (stddev matrix, mean stddev) - - Returns the mean standard deviation of all measurements of 'attribute' - (e.g. power consumption or timeout) for state/transition 'state_or_tran' where - parameter 'param_index' is dynamic and all other parameters are fixed. - I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then - this function returns the mean of the standard deviations of (a=1, b=*, c=1), - (a=1, b=*, c=2), and so on. - Also returns an (n-1)-dimensional array (where n is the number of parameters) - giving the standard deviation of each individual partition. E.g. for - param_index == 2 and 4 parameters, array[a][b][d] is the - stddev of measurements with param0 == a, param1 == b, param2 variable, - and param3 == d. + :returns: (stddev matrix, mean stddev, LUT matrix) + *stddev matrix* is an ((number of parameters)-1)-dimensional matrix giving the standard deviation of each individual parameter variation partition. + E.g. for param_index == 2 and 4 parameters, stddev matrix[a][b][d] is the stddev of + measurements with param0 == all_param_values[0][a], + param1 == all_param_values[1][b], param2 variable, and + param3 == all_param_values[3][d]. + *mean stddev* is the mean standard deviation of all measurements of `attribute` + for `state_or_tran` where parameter `param_index` is dynamic and all other parameters are fixed. + E.g., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then + this function returns the mean of the standard deviations of (a=1, b=*, c=1), + (a=1, b=*, c=2), and so on. + *LUT matrix* is an ((number of parameters)-1)-dimensional matrix giving the mean standard deviation of individual partitions with entirely constant parameters. + E.g. for param_index == 2 and 4 parameters, LUT matrix[a][b][d] is the mean of + stddev(param0 -> a, param1 -> b, param2 -> first distinct value, param3 -> d), + stddev(param0 -> a, param1 -> b, param2 -> second distinct value, param3 -> d), + and so on. """ param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) - # We will calculate the mean over the entire matrix later on. We cannot + # We will calculate the mean over the entire matrix later on. As we cannot # guarantee that each entry will be filled in this loop (e.g. transitions # whose arguments are combined using 'zip' rather than 'cartesian' always # have missing parameter combinations), we pre-fill it with NaN and use @@ -87,13 +91,25 @@ def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_in # vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value)) if np.all(np.isnan(stddev_matrix)): - vprint(verbose, '[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index)) - vprint(verbose, 'stddev_matrix = {}'.format(stddev_matrix)) + print('[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index)) + print('stddev_matrix = {}'.format(stddev_matrix)) return stddev_matrix, 0. return stddev_matrix, np.nanmean(stddev_matrix), lut_matrix #np.mean([np.std(partition) for partition in partitions]) def _corr_by_param(by_name, state_or_trans, attribute, param_index): + """ + Return correlation coefficient (`np.corrcoef`) of `by_name[state_or_trans][attribute][:]` <-> `by_name[state_or_trans]['param'][:][param_index]` + + A correlation coefficient close to 1 indicates that the attribute likely depends on the value of the parameter denoted by `param_index`, if it is nearly 0, it likely does not depend on it. + + If any value of `param_index` is not numeric (i.e., can not be parsed as float), this function returns 0. + + :param by_name: measurements partitioned by state/transition name + :param state_or_trans: state or transition name + :param attribute: model attribute + :param param_index: index of parameter in `by_name[state_or_trans]['param']` + """ if _all_params_are_numeric(by_name[state_or_trans], param_index): param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param'])))) try: @@ -232,6 +248,24 @@ class ParamStats: for attribute in by_name[state_or_tran]['attributes']: self.stats[state_or_tran][attribute] = self.compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, verbose = verbose) + def can_be_fitted(self, state_or_tran = None) -> bool: + """ + Return whether a sufficient amount of distinct numeric parameter values is available, allowing a parameter-aware model to be generated. + + :param state_or_tran: state or transition. If unset, returns whether any state or transition can be fitted. + """ + if state_or_tran is None: + keys = self.stats.keys() + else: + keys = [state_or_tran] + + for key in keys: + for param in self._parameter_names: + if len(list(filter(lambda n: is_numeric(n), self.distinct_values[key][param]))) > 2: + print(key, param, list(filter(lambda n: is_numeric(n), self.distinct_values[key][param]))) + return True + return False + def compute_param_statistics(self, by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False): """ Compute standard deviation and correlation coefficient for various data partitions. @@ -338,6 +372,108 @@ class ParamStats: return ret + def static_submodel_params(self, state_or_tran, attribute): + """ + Return the union of all parameter values which decide whether another parameter influences the model or not. + + I.e., the returned list of dicts contains one entry for each parameter value combination which (probably) does not have any parameter influencing the model. + If the current parameters matches one of these, a static sub-model built based on this subset of parameters can likely be used. + """ + # TODO + pass + + def has_codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> bool: + """ + Return whether there are parameters which determine whether `param` influences `state_or_tran` `attribute` or not. + + :param state_or_tran: model state or transition + :param attribute: model attribute + :param param: parameter name + """ + if len(self.codependent_parameters(state_or_tran, attribute, param)): + return True + return False + + def codependent_parameters(self, state_or_tran: str, attribute: str, param: str) -> list: + """ + Return list of parameters which determine whether `param` influences `state_or_tran` `attribute` or not. + + :param state_or_tran: model state or transition + :param attribute: model attribute + :param param: parameter name + """ + if self.stats[state_or_tran][attribute]['depends_on_param'][param]: + return self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters'] + return list() + + + def has_codependent_parameters_union(self, state_or_tran: str, attribute: str) -> bool: + """ + Return whether there is a subset of parameters which decides whether `state_or_tran` `attribute` is static or parameter-dependent + + :param state_or_tran: model state or transition + :param attribute: model attribute + """ + depends_on_a_parameter = False + for param in self._parameter_names: + if self.stats[state_or_tran][attribute]['depends_on_param'][param]: + print('{}/{} depends on {}'.format(state_or_tran, attribute, param)) + depends_on_a_parameter = True + if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0: + print('has no codependent parameters') + # Always depends on this parameter, regardless of other parameters' values + return False + return depends_on_a_parameter + + def codependent_parameters_union(self, state_or_tran: str, attribute: str) -> list: + """ + Return list of parameters which determine whether any parameter influences `state_or_tran` `attribute`. + + :param state_or_tran: model state or transition + :param attribute: model attribute + """ + codependent_parameters = set() + for param in self._parameter_names: + if self.stats[state_or_tran][attribute]['depends_on_param'][param]: + if len(self.codependent_parameters(state_or_tran, attribute, param)) == 0: + return list(self._parameter_names) + for codependent_param in self.codependent_parameters(state_or_tran, attribute, param): + codependent_parameters.add(codependent_param) + return sorted(codependent_parameters) + + def codependence_by_codependent_param_values(self, state_or_tran: str, attribute: str, param: str) -> dict: + """ + Return dict mapping codependent parameter values to a boolean indicating whether `param` influences `state_or_tran` `attribute`. + + If a dict value is true, `attribute` depends on `param` for the corresponding codependent parameter values, otherwise it does not. + + :param state_or_tran: model state or transition + :param attribute: model attribute + :param param: parameter name + """ + if self.stats[state_or_tran][attribute]['depends_on_param'][param]: + return self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value'] + return dict() + + def codependent_parameter_value_dicts(self, state_or_tran: str, attribute: str, param: str, kind='dynamic'): + """ + Return dicts of codependent parameter key-value mappings for which `param` influences (or does not influence) `state_or_tran` `attribute`. + + :param state_or_tran: model state or transition + :param attribute: model attribute + :param param: parameter name: + :param kind: 'static' or 'dynamic'. If 'dynamic' (the default), returns codependent parameter values for which `param` influences `attribute`. If 'static', returns codependent parameter values for which `param` does not influence `attribute` + """ + codependent_parameters = self.stats[state_or_tran][attribute]['param_data'][param]['codependent_parameters'] + codependence_info = self.stats[state_or_tran][attribute]['param_data'][param]['depends_for_codependent_value'] + if len(codependent_parameters) == 0: + return + else: + for param_values, is_dynamic in codependence_info.items(): + if (is_dynamic and kind == 'dynamic') or (not is_dynamic and kind == 'static'): + yield dict(zip(codependent_parameters, param_values)) + + def _depends_on_param(self, corr_param, std_param, std_lut): if self.use_corrcoef: return corr_param > 0.1 @@ -381,9 +517,12 @@ class ParamStats: if np.all(matrix == True) or np.all(matrix == False): return list() - if not is_power_of_two(np.count_nonzero(matrix)): - # cannot be reliably reduced to a list of parameters - return list() + # Diese Abbruchbedingung scheint noch nicht so schlau zu sein... + # Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt) + # Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht) + #if not is_power_of_two(np.count_nonzero(matrix)): + # # cannot be reliably reduced to a list of parameters + # return list() if np.count_nonzero(matrix) == 1: influential_parameters = list() @@ -413,20 +552,6 @@ class ParamStats: influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list) return influencer_parameters - def _get_codependent_parameters(self, stats, param): - """ - Return list of parameters which affect whether `param` influences the model attribute described in `stats` or not. - """ - safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y) - ratio_by_value = safe_div(stats['lut_by_param_values'][param], stats['std_by_param_values'][param]) - err_mode = np.seterr('ignore') - dep_by_value = ratio_by_value > 0.5 - np.seterr(**err_mode) - - other_param_list = list(filter(lambda x: x != param, self._parameter_names)) - influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list) - return influencer_parameters - def _param_independence_ratio(self, state_or_trans: str, attribute: str, param: str) -> float: """ Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param. @@ -459,21 +584,6 @@ class ParamStats: """ return 1 - self._param_independence_ratio(state_or_trans, attribute, param) - def reverse_dependent_parameters(self, state_or_trans: str, attribute: str, param: str) -> list: - """ - Return parameters whose value influences whether `attribute` of `state_or_trans` depends on `param` or not. - - For example, a radio's TX power is only influenced by the packet length if dynamically sized payloads are enabled. - So reverse_dependent_parameters('TX', 'power', 'packet_length') == ['dynamic_payload_size']. - - :param state_or_trans: state or transition name - :param attribute: model attribute - :param param: parameter name - - :returns: list of parameters - """ - return self._get_codependent_parameters(self.stats[state_or_trans][attribute], param) - def _arg_independence_ratio(self, state_or_trans, attribute, arg_index): statistics = self.stats[state_or_trans][attribute] if self.use_corrcoef: diff --git a/lib/utils.py b/lib/utils.py index e5699da..f040638 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -114,6 +114,21 @@ def param_slice_eq(a, b, index): return True return False +def match_parameter_values(input_param: dict, match_param: dict): + """ + Check whether one of the paramaters in `input_param` has the same value in `match_param`. + + :param input_param: parameter dict of a state/transition/... measurement + :param match_param: parameter value filter + :returns: True if for all parameters k in match_param: input_param[k] == match_param[k], or if match_param is None. + """ + if match_param is None: + return True + for k, v in match_param.items(): + if k in input_param and input_param[k] != v: + return False + return True + def by_name_to_by_param(by_name: dict): """ Convert aggregation by name to aggregation by name and parameter values. @@ -132,6 +147,8 @@ def by_name_to_by_param(by_name: dict): by_param[param_key]['isa'] = by_name[name]['isa'] for attribute in by_name[name]['attributes']: by_param[param_key][attribute].append(by_name[name][attribute][i]) + # Required for match_parameter_valuse in _try_fits + by_param[param_key]['param'].append(by_name[name]['param'][i]) return by_param def filter_aggregate_by_param(aggregate, parameters, parameter_filter): |