summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2018-02-06 08:52:07 +0100
committerDaniel Friesel <derf@finalrewind.org>2018-02-06 08:52:07 +0100
commit466895124cbf4bd1eb1b8a61ab641904db258501 (patch)
tree4992053a9ff6874c9de0db0fae78f9b8b7220de3
parent4ce047e96b74c58a44b3f80320a8c03f43bc8fea (diff)
calculate parameter dependence
-rwxr-xr-xbin/analyze-archive.py17
-rwxr-xr-xlib/dfatool.py97
2 files changed, 105 insertions, 9 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index cf3449a..e5f3783 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -13,12 +13,23 @@ if __name__ == '__main__':
print('--- simple static model ---')
static_model = model.get_static()
for state in model.states():
- print('{:10s}: {:.0f} µW'.format(state, static_model(state, 'power')))
+ print('{:10s}: {:.0f} µW ({:.2f})'.format(
+ state,
+ static_model(state, 'power'),
+ model.generic_param_dependence_ratio(state, 'power')))
+ for param in model.parameters():
+ print('{:10s} dependence on {:15s}: {:.2f}'.format(
+ '',
+ param,
+ model.param_dependence_ratio(state, 'power', param)))
for trans in model.transitions():
- print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ'.format(
+ print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
trans, static_model(trans, 'energy'),
static_model(trans, 'rel_energy_prev'),
- static_model(trans, 'rel_energy_next')))
+ static_model(trans, 'rel_energy_next'),
+ model.generic_param_dependence_ratio(trans, 'energy'),
+ model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
+ model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
model.assess(static_model)
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 3e3a0b5..7a5830b 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -135,6 +135,7 @@ class RawData:
self.setup_by_fileno = []
self.version = 0
self.preprocessed = False
+ self._parameter_names = None
def _state_is_too_short(self, online, offline, state_duration, next_transition):
# We cannot control when an interrupt causes a state to be left
@@ -179,6 +180,18 @@ class RawData:
offline_trace_part = processed_data['trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
+ if self._parameter_names == None:
+ self._parameter_names = sorted(online_trace_part['parameter'].keys())
+
+ if sorted(online_trace_part['parameter'].keys()) != self._parameter_names:
+ processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent paramete set: should be {param_want:s}, is {param_is:s}'.format(
+ off_idx = offline_idx, on_idx = online_run_idx,
+ on_sub = online_trace_part_idx,
+ on_name = online_trace_part['name'],
+ param_want = self._parameter_names,
+ param_is = sorted(online_trace_part['parameter'].keys())
+ )
+
if online_trace_part['isa'] != offline_trace_part['isa']:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
@@ -332,6 +345,11 @@ class RawData:
'num_valid' : num_valid
}
+def _param_slice_eq(a, b, index):
+ if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
+ return True
+ return False
+
class EnergyModel:
def __init__(self, preprocessed_data):
@@ -340,13 +358,19 @@ class EnergyModel:
self.by_arg = {}
self.by_param = {}
self.by_trace = {}
+ self.stats = {}
np.seterr('raise')
+ self._parameter_names = sorted(self.traces[0]['trace'][0]['parameter'].keys())
for runidx, run in enumerate(self.traces):
# if opts['ignore-trace-idx'] != runidx
for i, elem in enumerate(run['trace']):
if elem['name'] != 'UNINITIALIZED':
self._load_run_elem(i, elem)
self._aggregate_to_ndarray(self.by_name)
+ for state_or_trans in self.by_name.keys():
+ for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
+ if key in self.by_name[state_or_trans]:
+ self._compute_param_statistics(state_or_trans, key)
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
@@ -369,18 +393,76 @@ class EnergyModel:
self._add_data_to_aggregate(self.by_name, elem['name'], elem)
self._add_data_to_aggregate(self.by_param, (elem['name'], tuple(_param_dict_to_list(elem['parameter']))), elem)
- def get_static(self):
- static_model = {}
- for name, elem in self.by_name.items():
- static_model[name] = {}
+ def _compute_param_statistics(self, state_or_trans, key):
+ if not state_or_trans in self.stats:
+ self.stats[state_or_trans] = {}
+
+ #static_model = self.get_static()
+ #lut_model = self.get_param_lut()
+
+ self.stats[state_or_trans][key] = {
+ 'std_static' : np.std(self.by_name[state_or_trans][key]),
+ 'std_param_lut' : np.mean([np.std(self.by_param[x][key]) for x in self.by_param.keys() if x[0] == state_or_trans]),
+ 'std_by_param' : {},
+ 'mae_static' : 5,
+ }
+
+ for param_idx, param in enumerate(self._parameter_names):
+ self.stats[state_or_trans][key]['std_by_param'][param] = self._mean_std_by_param(state_or_trans, key, param_idx)
+
+# returns the mean standard deviation of all measurements of 'what'
+# (e.g. power consumption or timeout) for state/transition 'name' where
+# parameter 'index' is dynamic and all other parameters are fixed.
+# I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b', then
+# this function returns the mean of the standard deviations of (a=1, b=*, c=1),
+# (a=1, b=*, c=2), and so on
+ def _mean_std_by_param(self, state_or_tran, key, param_index):
+ partitions = []
+ for param_value in filter(lambda x: x[0] == state_or_tran, self.by_param.keys()):
+ param_partition = []
+ for k, v in self.by_param.items():
+ if _param_slice_eq(k, param_value, param_index):
+ param_partition.extend(v[key])
+ if len(param_partition):
+ partitions.append(param_partition)
+ else:
+ print('[W] parameter value partition for {} is empty'.format(param_value))
+ return np.mean([np.std(partition) for partition in partitions])
+
+ def generic_param_independence_ratio(self, state_or_trans, key):
+ statistics = self.stats[state_or_trans][key]
+ if statistics['std_static'] == 0:
+ return 0
+ return statistics['std_param_lut'] / statistics['std_static']
+
+ def generic_param_dependence_ratio(self, state_or_trans, key):
+ return 1 - self.generic_param_independence_ratio(state_or_trans, key)
+
+ def param_independence_ratio(self, state_or_trans, key, param):
+ statistics = self.stats[state_or_trans][key]
+ if statistics['std_by_param'][param] == 0:
+ return 0
+ return statistics['std_param_lut'] / statistics['std_by_param'][param]
+
+ def param_dependence_ratio(self, state_or_trans, key, param):
+ return 1 - self.param_independence_ratio(state_or_trans, key, param)
+
+ def _get_model_from_dict(self, model_dict, model_function):
+ model = {}
+ for name, elem in model_dict.items():
+ model[name] = {}
for key in ['power', 'energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']:
if key in elem:
try:
- static_model[name][key] = np.median(elem[key])
+ model[name][key] = model_function(elem[key])
except RuntimeWarning:
print('[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
print('[W] Got no data for {} {}: {}'.format(name, key, fpe))
+ return model
+
+ def get_static(self):
+ static_model = self._get_model_from_dict(self.by_name, np.median)
def static_median_getter(name, key, **kwargs):
return static_model[name][key]
@@ -429,6 +511,9 @@ class EnergyModel:
def transitions(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))
+ def parameters(self):
+ return self._parameter_names
+
def assess(self, model_function):
for name, elem in sorted(self.by_name.items()):
print('{}:'.format(name))
@@ -444,7 +529,7 @@ class EnergyModel:
measures['mae']
))
else:
- for key in ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']:
+ for key in ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next', 'timeout']:
predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
measures = regression_measures(predicted_data, elem[key])
if 'smape' in measures: