summaryrefslogtreecommitdiff
path: root/bin/analyze-archive.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-02-01 15:55:45 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-02-01 15:55:45 +0100
commit7dd98ebe0f52c85fd0e8f016b9a6d1ae4e932594 (patch)
treec22d82efbe019b9ea00af443af1aeb7f59fc1f07 /bin/analyze-archive.py
parentd5a256640e60c7ed3211c57e3a22bf47af5dfc43 (diff)
move parameter influence detection to newly introduced ParamStat class
Diffstat (limited to 'bin/analyze-archive.py')
-rwxr-xr-xbin/analyze-archive.py24
1 files changed, 12 insertions, 12 deletions
diff --git a/bin/analyze-archive.py b/bin/analyze-archive.py
index f203038..dbfe0d1 100755
--- a/bin/analyze-archive.py
+++ b/bin/analyze-archive.py
@@ -79,17 +79,17 @@ def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
print(r'key attribute $1 - \frac{\sigma_X}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
- print('{} {} {:.8f}'.format(state_or_tran, attribute, model.generic_param_dependence_ratio(state_or_tran, attribute)))
+ print('{} {} {:.8f}'.format(state_or_tran, attribute, model.stats.generic_param_dependence_ratio(state_or_tran, attribute)))
print('')
print(r'key attribute parameter $1 - \frac{...}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
for param in model.parameters():
- print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.param_dependence_ratio(state_or_tran, attribute, param)))
+ print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.stats.param_dependence_ratio(state_or_tran, attribute, param)))
if state_or_tran in model._num_args:
for arg_index in range(model._num_args[state_or_tran]):
- print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+ print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
if __name__ == '__main__':
@@ -168,20 +168,20 @@ if __name__ == '__main__':
print('{:10s}: {:.0f} µW ({:.2f})'.format(
state,
static_model(state, 'power'),
- model.generic_param_dependence_ratio(state, 'power')))
+ model.stats.generic_param_dependence_ratio(state, 'power')))
for param in model.parameters():
print('{:10s} dependence on {:15s}: {:.2f}'.format(
'',
param,
- model.param_dependence_ratio(state, 'power', param)))
+ model.stats.param_dependence_ratio(state, 'power', param)))
for trans in model.transitions():
print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
trans, static_model(trans, 'energy'),
static_model(trans, 'rel_energy_prev'),
static_model(trans, 'rel_energy_next'),
- model.generic_param_dependence_ratio(trans, 'energy'),
- model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
- model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
+ model.stats.generic_param_dependence_ratio(trans, 'energy'),
+ model.stats.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
+ model.stats.generic_param_dependence_ratio(trans, 'rel_energy_next')))
print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
static_quality = model.assess(static_model)
@@ -200,14 +200,14 @@ if __name__ == '__main__':
for attribute in model.attributes(state):
info = param_info(state, attribute)
print('{:10s} {:10s} non-param stddev {:f}'.format(
- state, attribute, model.stats[state][attribute]['std_static']
+ state, attribute, model.stats.stats[state][attribute]['std_static']
))
print('{:10s} {:10s} param-lut stddev {:f}'.format(
- state, attribute, model.stats[state][attribute]['std_param_lut']
+ state, attribute, model.stats.stats[state][attribute]['std_param_lut']
))
- for param in sorted(model.stats[state][attribute]['std_by_param'].keys()):
+ for param in sorted(model.stats.stats[state][attribute]['std_by_param'].keys()):
print('{:10s} {:10s} {:10s} stddev {:f}'.format(
- state, attribute, param, model.stats[state][attribute]['std_by_param'][param]
+ state, attribute, param, model.stats.stats[state][attribute]['std_by_param'][param]
))
if info != None:
for param_name in sorted(info['fit_result'].keys(), key=str):