summaryrefslogtreecommitdiff
path: root/bin/analyze-timing.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-05-28 12:04:37 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-05-28 12:04:37 +0200
commitc69331e4d925658b2bf26dcb387981f6530d7b9e (patch)
treed19c7f9b0bf51f68c104057e013630e009835268 /bin/analyze-timing.py
parent23927051ac3e64cabbaa6c30e8356dfe90ebfa6c (diff)
use black(1) for uniform code formatting
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-xbin/analyze-timing.py382
1 files changed, 258 insertions, 124 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 6a458d9..e565c8f 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -91,55 +91,83 @@ def print_model_quality(results):
for state_or_tran in results.keys():
print()
for key, result in results[state_or_tran].items():
- if 'smape' in result:
- print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
- state_or_tran, key, result['smape'], result['mae']))
+ if "smape" in result:
+ print(
+ "{:20s} {:15s} {:.2f}% / {:.0f}".format(
+ state_or_tran, key, result["smape"], result["mae"]
+ )
+ )
else:
- print('{:20s} {:15s} {:.0f}'.format(
- state_or_tran, key, result['mae']))
+ print("{:20s} {:15s} {:.0f}".format(state_or_tran, key, result["mae"]))
def format_quality_measures(result):
- if 'smape' in result:
- return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
+ if "smape" in result:
+ return "{:6.2f}% / {:9.0f}".format(result["smape"], result["mae"])
else:
- return '{:6} {:9.0f}'.format('', result['mae'])
+ return "{:6} {:9.0f}".format("", result["mae"])
def model_quality_table(result_lists, info_list):
- for state_or_tran in result_lists[0]['by_name'].keys():
- for key in result_lists[0]['by_name'][state_or_tran].keys():
- buf = '{:20s} {:15s}'.format(state_or_tran, key)
+ for state_or_tran in result_lists[0]["by_name"].keys():
+ for key in result_lists[0]["by_name"][state_or_tran].keys():
+ buf = "{:20s} {:15s}".format(state_or_tran, key)
for i, results in enumerate(result_lists):
info = info_list[i]
- buf += ' ||| '
+ buf += " ||| "
if info is None or info(state_or_tran, key):
- result = results['by_name'][state_or_tran][key]
+ result = results["by_name"][state_or_tran][key]
buf += format_quality_measures(result)
else:
- buf += '{:6}----{:9}'.format('', '')
+ buf += "{:6}----{:9}".format("", "")
print(buf)
def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
- print('')
- print(r'key attribute $1 - \frac{\sigma_X}{...}$')
+ print("")
+ print(r"key attribute $1 - \frac{\sigma_X}{...}$")
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
- print('{} {} {:.8f}'.format(state_or_tran, attribute, model.stats.generic_param_dependence_ratio(state_or_tran, attribute)))
-
- print('')
- print(r'key attribute parameter $1 - \frac{...}{...}$')
+ print(
+ "{} {} {:.8f}".format(
+ state_or_tran,
+ attribute,
+ model.stats.generic_param_dependence_ratio(
+ state_or_tran, attribute
+ ),
+ )
+ )
+
+ print("")
+ print(r"key attribute parameter $1 - \frac{...}{...}$")
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
for param in model.parameters():
- print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.stats.param_dependence_ratio(state_or_tran, attribute, param)))
+ print(
+ "{} {} {} {:.8f}".format(
+ state_or_tran,
+ attribute,
+ param,
+ model.stats.param_dependence_ratio(
+ state_or_tran, attribute, param
+ ),
+ )
+ )
if state_or_tran in model._num_args:
for arg_index in range(model._num_args[state_or_tran]):
- print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+ print(
+ "{} {} {:d} {:.8f}".format(
+ state_or_tran,
+ attribute,
+ arg_index,
+ model.stats.arg_dependence_ratio(
+ state_or_tran, attribute, arg_index
+ ),
+ )
+ )
-if __name__ == '__main__':
+if __name__ == "__main__":
ignored_trace_indexes = []
discard_outliers = None
@@ -154,56 +182,60 @@ if __name__ == '__main__':
try:
optspec = (
- 'plot-unparam= plot-param= show-models= show-quality= '
- 'ignored-trace-indexes= discard-outliers= function-override= '
- 'filter-param= '
- 'cross-validate= '
- 'corrcoef param-info '
- 'with-safe-functions hwmodel= export-energymodel='
+ "plot-unparam= plot-param= show-models= show-quality= "
+ "ignored-trace-indexes= discard-outliers= function-override= "
+ "filter-param= "
+ "cross-validate= "
+ "corrcoef param-info "
+ "with-safe-functions hwmodel= export-energymodel="
)
- raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))
for option, parameter in raw_opts:
- optname = re.sub(r'^--', '', option)
+ optname = re.sub(r"^--", "", option)
opts[optname] = parameter
- if 'ignored-trace-indexes' in opts:
- ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
+ if "ignored-trace-indexes" in opts:
+ ignored_trace_indexes = list(
+ map(int, opts["ignored-trace-indexes"].split(","))
+ )
if 0 in ignored_trace_indexes:
- print('[E] arguments to --ignored-trace-indexes start from 1')
+ print("[E] arguments to --ignored-trace-indexes start from 1")
- if 'discard-outliers' in opts:
- discard_outliers = float(opts['discard-outliers'])
+ if "discard-outliers" in opts:
+ discard_outliers = float(opts["discard-outliers"])
- if 'function-override' in opts:
- for function_desc in opts['function-override'].split(';'):
- state_or_tran, attribute, *function_str = function_desc.split(' ')
- function_override[(state_or_tran, attribute)] = ' '.join(function_str)
+ if "function-override" in opts:
+ for function_desc in opts["function-override"].split(";"):
+ state_or_tran, attribute, *function_str = function_desc.split(" ")
+ function_override[(state_or_tran, attribute)] = " ".join(function_str)
- if 'show-models' in opts:
- show_models = opts['show-models'].split(',')
+ if "show-models" in opts:
+ show_models = opts["show-models"].split(",")
- if 'show-quality' in opts:
- show_quality = opts['show-quality'].split(',')
+ if "show-quality" in opts:
+ show_quality = opts["show-quality"].split(",")
- if 'cross-validate' in opts:
- xv_method, xv_count = opts['cross-validate'].split(':')
+ if "cross-validate" in opts:
+ xv_method, xv_count = opts["cross-validate"].split(":")
xv_count = int(xv_count)
- if 'with-safe-functions' in opts:
+ if "with-safe-functions" in opts:
safe_functions_enabled = True
- if 'hwmodel' in opts:
- with open(opts['hwmodel'], 'r') as f:
+ if "hwmodel" in opts:
+ with open(opts["hwmodel"], "r") as f:
hwmodel = json.load(f)
- if 'corrcoef' not in opts:
- opts['corrcoef'] = False
+ if "corrcoef" not in opts:
+ opts["corrcoef"] = False
- if 'filter-param' in opts:
- opts['filter-param'] = list(map(lambda x: x.split('='), opts['filter-param'].split(',')))
+ if "filter-param" in opts:
+ opts["filter-param"] = list(
+ map(lambda x: x.split("="), opts["filter-param"].split(","))
+ )
else:
- opts['filter-param'] = list()
+ opts["filter-param"] = list()
except getopt.GetoptError as err:
print(err)
@@ -212,44 +244,74 @@ if __name__ == '__main__':
raw_data = TimingData(args)
preprocessed_data = raw_data.get_preprocessed_data()
- by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
+ by_name, parameters, arg_count = pta_trace_to_aggregate(
+ preprocessed_data, ignored_trace_indexes
+ )
prune_dependent_parameters(by_name, parameters)
- filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
+ filter_aggregate_by_param(by_name, parameters, opts["filter-param"])
- model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef=opts['corrcoef'], function_override=function_override)
+ model = AnalyticModel(
+ by_name,
+ parameters,
+ arg_count,
+ use_corrcoef=opts["corrcoef"],
+ function_override=function_override,
+ )
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
- if 'param-info' in opts:
+ if "param-info" in opts:
for state in model.names:
- print('{}:'.format(state))
+ print("{}:".format(state))
for param in model.parameters:
- print(' {} = {}'.format(param, model.stats.distinct_values[state][param]))
-
- if 'plot-unparam' in opts:
- for kv in opts['plot-unparam'].split(';'):
- state_or_trans, attribute, ylabel = kv.split(':')
- fname = 'param_y_{}_{}.pdf'.format(state_or_trans, attribute)
- plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel='measurement #', ylabel=ylabel)
+ print(
+ " {} = {}".format(
+ param, model.stats.distinct_values[state][param]
+ )
+ )
+
+ if "plot-unparam" in opts:
+ for kv in opts["plot-unparam"].split(";"):
+ state_or_trans, attribute, ylabel = kv.split(":")
+ fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute)
+ plotter.plot_y(
+ model.by_name[state_or_trans][attribute],
+ xlabel="measurement #",
+ ylabel=ylabel,
+ )
if len(show_models):
- print('--- simple static model ---')
+ print("--- simple static model ---")
static_model = model.get_static()
- if 'static' in show_models or 'all' in show_models:
+ if "static" in show_models or "all" in show_models:
for trans in model.names:
- print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
+ print("{:10s}: {:.0f} µs".format(trans, static_model(trans, "duration")))
for param in model.parameters:
- print('{:10s} dependence on {:15s}: {:.2f}'.format(
- '',
- param,
- model.stats.param_dependence_ratio(trans, 'duration', param)))
- if model.stats.has_codependent_parameters(trans, 'duration', param):
- print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param))))
- for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param):
- print('{:24s} parameter-aware for {}'.format('', param_dict))
+ print(
+ "{:10s} dependence on {:15s}: {:.2f}".format(
+ "",
+ param,
+ model.stats.param_dependence_ratio(trans, "duration", param),
+ )
+ )
+ if model.stats.has_codependent_parameters(trans, "duration", param):
+ print(
+ "{:24s} co-dependencies: {:s}".format(
+ "",
+ ", ".join(
+ model.stats.codependent_parameters(
+ trans, "duration", param
+ )
+ ),
+ )
+ )
+ for param_dict in model.stats.codependent_parameter_value_dicts(
+ trans, "duration", param
+ ):
+ print("{:24s} parameter-aware for {}".format("", param_dict))
# import numpy as np
# safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
# ratio_by_value = safe_div(model.stats.stats['write']['duration']['lut_by_param_values']['max_retry_count'], model.stats.stats['write']['duration']['std_by_param_values']['max_retry_count'])
@@ -260,81 +322,153 @@ if __name__ == '__main__':
# und warum ist da eine non-power-of-two Zahl von True-Einträgen in der Matrix? 3 stück ist komisch...
# print(dep_by_value)
- if xv_method == 'montecarlo':
+ if xv_method == "montecarlo":
static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
if len(show_models):
- print('--- LUT ---')
+ print("--- LUT ---")
lut_model = model.get_param_lut()
- if xv_method == 'montecarlo':
+ if xv_method == "montecarlo":
lut_quality = xv.montecarlo(lambda m: m.get_param_lut(fallback=True), xv_count)
else:
lut_quality = model.assess(lut_model)
if len(show_models):
- print('--- param model ---')
+ print("--- param model ---")
- param_model, param_info = model.get_fitted(safe_functions_enabled=safe_functions_enabled)
+ param_model, param_info = model.get_fitted(
+ safe_functions_enabled=safe_functions_enabled
+ )
- if 'paramdetection' in show_models or 'all' in show_models:
+ if "paramdetection" in show_models or "all" in show_models:
for transition in model.names:
- for attribute in ['duration']:
+ for attribute in ["duration"]:
info = param_info(transition, attribute)
- print('{:10s} {:10s} non-param stddev {:f}'.format(
- transition, attribute, model.stats.stats[transition][attribute]['std_static']
- ))
- print('{:10s} {:10s} param-lut stddev {:f}'.format(
- transition, attribute, model.stats.stats[transition][attribute]['std_param_lut']
- ))
- for param in sorted(model.stats.stats[transition][attribute]['std_by_param'].keys()):
- print('{:10s} {:10s} {:10s} stddev {:f}'.format(
- transition, attribute, param, model.stats.stats[transition][attribute]['std_by_param'][param]
- ))
- print('{:10s} {:10s} dependence on {:15s}: {:.2f}'.format(
- transition, attribute, param, model.stats.param_dependence_ratio(transition, attribute, param)))
- for i, arg_stddev in enumerate(model.stats.stats[transition][attribute]['std_by_arg']):
- print('{:10s} {:10s} arg{:d} stddev {:f}'.format(
- transition, attribute, i, arg_stddev
- ))
- print('{:10s} {:10s} dependence on arg{:d}: {:.2f}'.format(
- transition, attribute, i, model.stats.arg_dependence_ratio(transition, attribute, i)))
+ print(
+ "{:10s} {:10s} non-param stddev {:f}".format(
+ transition,
+ attribute,
+ model.stats.stats[transition][attribute]["std_static"],
+ )
+ )
+ print(
+ "{:10s} {:10s} param-lut stddev {:f}".format(
+ transition,
+ attribute,
+ model.stats.stats[transition][attribute]["std_param_lut"],
+ )
+ )
+ for param in sorted(
+ model.stats.stats[transition][attribute]["std_by_param"].keys()
+ ):
+ print(
+ "{:10s} {:10s} {:10s} stddev {:f}".format(
+ transition,
+ attribute,
+ param,
+ model.stats.stats[transition][attribute]["std_by_param"][
+ param
+ ],
+ )
+ )
+ print(
+ "{:10s} {:10s} dependence on {:15s}: {:.2f}".format(
+ transition,
+ attribute,
+ param,
+ model.stats.param_dependence_ratio(
+ transition, attribute, param
+ ),
+ )
+ )
+ for i, arg_stddev in enumerate(
+ model.stats.stats[transition][attribute]["std_by_arg"]
+ ):
+ print(
+ "{:10s} {:10s} arg{:d} stddev {:f}".format(
+ transition, attribute, i, arg_stddev
+ )
+ )
+ print(
+ "{:10s} {:10s} dependence on arg{:d}: {:.2f}".format(
+ transition,
+ attribute,
+ i,
+ model.stats.arg_dependence_ratio(transition, attribute, i),
+ )
+ )
if info is not None:
- for param_name in sorted(info['fit_result'].keys(), key=str):
- param_fit = info['fit_result'][param_name]['results']
+ for param_name in sorted(info["fit_result"].keys(), key=str):
+ param_fit = info["fit_result"][param_name]["results"]
for function_type in sorted(param_fit.keys()):
- function_rmsd = param_fit[function_type]['rmsd']
- print('{:10s} {:10s} {:10s} mean {:10s} RMSD {:.0f}'.format(
- transition, attribute, str(param_name), function_type, function_rmsd
- ))
-
- if 'param' in show_models or 'all' in show_models:
+ function_rmsd = param_fit[function_type]["rmsd"]
+ print(
+ "{:10s} {:10s} {:10s} mean {:10s} RMSD {:.0f}".format(
+ transition,
+ attribute,
+ str(param_name),
+ function_type,
+ function_rmsd,
+ )
+ )
+
+ if "param" in show_models or "all" in show_models:
for trans in model.names:
- for attribute in ['duration']:
+ for attribute in ["duration"]:
if param_info(trans, attribute):
- print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
- print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
-
- if xv_method == 'montecarlo':
+ print(
+ "{:10s}: {:10s}: {}".format(
+ trans,
+ attribute,
+ param_info(trans, attribute)["function"]._model_str,
+ )
+ )
+ print(
+ "{:10s} {:10s} {}".format(
+ "",
+ "",
+ param_info(trans, attribute)["function"]._regression_args,
+ )
+ )
+
+ if xv_method == "montecarlo":
analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
else:
analytic_quality = model.assess(param_model)
- if 'tex' in show_models or 'tex' in show_quality:
- print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality)
+ if "tex" in show_models or "tex" in show_quality:
+ print_text_model_data(
+ model,
+ static_model,
+ static_quality,
+ lut_model,
+ lut_quality,
+ param_model,
+ param_info,
+ analytic_quality,
+ )
- if 'table' in show_quality or 'all' in show_quality:
- model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
+ if "table" in show_quality or "all" in show_quality:
+ model_quality_table(
+ [static_quality, analytic_quality, lut_quality], [None, param_info, None]
+ )
- if 'plot-param' in opts:
- for kv in opts['plot-param'].split(';'):
- state_or_trans, attribute, param_name, *function = kv.split(' ')
+ if "plot-param" in opts:
+ for kv in opts["plot-param"].split(";"):
+ state_or_trans, attribute, param_name, *function = kv.split(" ")
if len(function):
- function = gplearn_to_function(' '.join(function))
+ function = gplearn_to_function(" ".join(function))
else:
function = None
- plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
+ plotter.plot_param(
+ model,
+ state_or_trans,
+ attribute,
+ model.param_index(param_name),
+ extra_function=function,
+ )
sys.exit(0)