summaryrefslogtreecommitdiff
path: root/bin/analyze-timing.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-11-21 08:17:04 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2019-11-21 08:17:04 +0100
commit0d4616db3975919c46b73cfbd4c6054b94e55aa6 (patch)
treece3b4eaadb62583d155b804113008794ab2535fd /bin/analyze-timing.py
parent68c54f846d941ab2bb7367c5ac5dad091b5fde9f (diff)
flake8
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-xbin/analyze-timing.py30
1 files changed, 20 insertions, 10 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py
index 6c84a67..9a3aa41 100755
--- a/bin/analyze-timing.py
+++ b/bin/analyze-timing.py
@@ -79,14 +79,14 @@ import plotter
import re
import sys
from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
-from dfatool import soft_cast_int, is_numeric, gplearn_to_function
+from dfatool import gplearn_to_function
from dfatool import CrossValidator
from utils import filter_aggregate_by_param
from parameters import prune_dependent_parameters
-import utils
opts = {}
+
def print_model_quality(results):
for state_or_tran in results.keys():
print()
@@ -98,12 +98,14 @@ def print_model_quality(results):
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
+
def format_quality_measures(result):
if 'smape' in result:
return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
return '{:6} {:9.0f}'.format('', result['mae'])
+
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]['by_name'].keys():
for key in result_lists[0]['by_name'][state_or_tran].keys():
@@ -111,7 +113,7 @@ def model_quality_table(result_lists, info_list):
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
- if info == None or info(state_or_tran, key):
+ if info is None or info(state_or_tran, key):
result = results['by_name'][state_or_tran][key]
buf += format_quality_measures(result)
else:
@@ -136,6 +138,7 @@ def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
for arg_index in range(model._num_args[state_or_tran]):
print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
+
if __name__ == '__main__':
ignored_trace_indexes = []
@@ -215,7 +218,7 @@ if __name__ == '__main__':
filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
- model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef = opts['corrcoef'], function_override = function_override)
+ model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef=opts['corrcoef'], function_override=function_override)
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
@@ -229,8 +232,8 @@ if __name__ == '__main__':
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute, ylabel = kv.split(':')
- fname = 'param_y_{}_{}.pdf'.format(state_or_trans,attribute)
- plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel = 'measurement #', ylabel = ylabel)
+ fname = 'param_y_{}_{}.pdf'.format(state_or_trans, attribute)
+ plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel='measurement #', ylabel=ylabel)
if len(show_models):
print('--- simple static model ---')
@@ -247,6 +250,15 @@ if __name__ == '__main__':
print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param))))
for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param):
print('{:24s} parameter-aware for {}'.format('', param_dict))
+ # import numpy as np
+ # safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
+ # ratio_by_value = safe_div(model.stats.stats['write']['duration']['lut_by_param_values']['max_retry_count'], model.stats.stats['write']['duration']['std_by_param_values']['max_retry_count'])
+ # err_mode = np.seterr('warn')
+ # dep_by_value = ratio_by_value > 0.5
+ # np.seterr(**err_mode)
+ # Eigentlich sollte hier ein paar mal True stehen, ist aber nicht so...
+ # und warum ist da eine non-power-of-two Zahl von True-Einträgen in der Matrix? 3 stück ist komisch...
+ # print(dep_by_value)
if xv_method == 'montecarlo':
static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
@@ -265,7 +277,7 @@ if __name__ == '__main__':
if len(show_models):
print('--- param model ---')
- param_model, param_info = model.get_fitted(safe_functions_enabled = safe_functions_enabled)
+ param_model, param_info = model.get_fitted(safe_functions_enabled=safe_functions_enabled)
if 'paramdetection' in show_models or 'all' in show_models:
for transition in model.names:
@@ -289,7 +301,7 @@ if __name__ == '__main__':
))
print('{:10s} {:10s} dependence on arg{:d}: {:.2f}'.format(
transition, attribute, i, model.stats.arg_dependence_ratio(transition, attribute, i)))
- if info != None:
+ if info is not None:
for param_name in sorted(info['fit_result'].keys(), key=str):
param_fit = info['fit_result'][param_name]['results']
for function_type in sorted(param_fit.keys()):
@@ -325,6 +337,4 @@ if __name__ == '__main__':
function = None
plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
-
-
sys.exit(0)