diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2020-05-28 15:44:08 +0200 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2020-05-28 15:44:08 +0200 |
commit | ca63a62663dbbefc854e7ed629e35cd06defb637 (patch) | |
tree | c33abba68901425b123f3f1e2cc94f12e0026cfc /bin/analyze-timing.py | |
parent | 52b214e4566bbfc4458240ed130b7320beb12bfb (diff) |
bin: rename opts to opt, as it is a dict
Diffstat (limited to 'bin/analyze-timing.py')
-rwxr-xr-x | bin/analyze-timing.py | 60 |
1 files changed, 30 insertions, 30 deletions
diff --git a/bin/analyze-timing.py b/bin/analyze-timing.py index e565c8f..4039f45 100755 --- a/bin/analyze-timing.py +++ b/bin/analyze-timing.py @@ -84,7 +84,7 @@ from dfatool.dfatool import CrossValidator from dfatool.utils import filter_aggregate_by_param from dfatool.parameters import prune_dependent_parameters -opts = {} +opt = dict() def print_model_quality(results): @@ -193,49 +193,49 @@ if __name__ == "__main__": for option, parameter in raw_opts: optname = re.sub(r"^--", "", option) - opts[optname] = parameter + opt[optname] = parameter - if "ignored-trace-indexes" in opts: + if "ignored-trace-indexes" in opt: ignored_trace_indexes = list( - map(int, opts["ignored-trace-indexes"].split(",")) + map(int, opt["ignored-trace-indexes"].split(",")) ) if 0 in ignored_trace_indexes: print("[E] arguments to --ignored-trace-indexes start from 1") - if "discard-outliers" in opts: - discard_outliers = float(opts["discard-outliers"]) + if "discard-outliers" in opt: + discard_outliers = float(opt["discard-outliers"]) - if "function-override" in opts: - for function_desc in opts["function-override"].split(";"): + if "function-override" in opt: + for function_desc in opt["function-override"].split(";"): state_or_tran, attribute, *function_str = function_desc.split(" ") function_override[(state_or_tran, attribute)] = " ".join(function_str) - if "show-models" in opts: - show_models = opts["show-models"].split(",") + if "show-models" in opt: + show_models = opt["show-models"].split(",") - if "show-quality" in opts: - show_quality = opts["show-quality"].split(",") + if "show-quality" in opt: + show_quality = opt["show-quality"].split(",") - if "cross-validate" in opts: - xv_method, xv_count = opts["cross-validate"].split(":") + if "cross-validate" in opt: + xv_method, xv_count = opt["cross-validate"].split(":") xv_count = int(xv_count) - if "with-safe-functions" in opts: + if "with-safe-functions" in opt: safe_functions_enabled = True - if "hwmodel" in opts: - with open(opts["hwmodel"], "r") as f: + if "hwmodel" in opt: + with open(opt["hwmodel"], "r") as f: hwmodel = json.load(f) - if "corrcoef" not in opts: - opts["corrcoef"] = False + if "corrcoef" not in opt: + opt["corrcoef"] = False - if "filter-param" in opts: - opts["filter-param"] = list( - map(lambda x: x.split("="), opts["filter-param"].split(",")) + if "filter-param" in opt: + opt["filter-param"] = list( + map(lambda x: x.split("="), opt["filter-param"].split(",")) ) else: - opts["filter-param"] = list() + opt["filter-param"] = list() except getopt.GetoptError as err: print(err) @@ -250,20 +250,20 @@ if __name__ == "__main__": prune_dependent_parameters(by_name, parameters) - filter_aggregate_by_param(by_name, parameters, opts["filter-param"]) + filter_aggregate_by_param(by_name, parameters, opt["filter-param"]) model = AnalyticModel( by_name, parameters, arg_count, - use_corrcoef=opts["corrcoef"], + use_corrcoef=opt["corrcoef"], function_override=function_override, ) if xv_method: xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count) - if "param-info" in opts: + if "param-info" in opt: for state in model.names: print("{}:".format(state)) for param in model.parameters: @@ -273,8 +273,8 @@ if __name__ == "__main__": ) ) - if "plot-unparam" in opts: - for kv in opts["plot-unparam"].split(";"): + if "plot-unparam" in opt: + for kv in opt["plot-unparam"].split(";"): state_or_trans, attribute, ylabel = kv.split(":") fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute) plotter.plot_y( @@ -456,8 +456,8 @@ if __name__ == "__main__": [static_quality, analytic_quality, lut_quality], [None, param_info, None] ) - if "plot-param" in opts: - for kv in opts["plot-param"].split(";"): + if "plot-param" in opt: + for kv in opt["plot-param"].split(";"): state_or_trans, attribute, param_name, *function = kv.split(" ") if len(function): function = gplearn_to_function(" ".join(function)) |