summaryrefslogtreecommitdiff
path: root/bin/merge.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2017-04-04 16:48:57 +0200
committerDaniel Friesel <derf@finalrewind.org>2017-04-04 16:48:57 +0200
commitc2ce4002a01586be9c7e3ba6d6c3f78b0a13c612 (patch)
tree85f45ccb6a50559ba2920e98e22647ab490e52a8 /bin/merge.py
parent21a79d1b69b3297a546e7d9bc09edad8deaeb10d (diff)
more refactoring
Diffstat (limited to 'bin/merge.py')
-rwxr-xr-xbin/merge.py64
1 files changed, 17 insertions, 47 deletions
diff --git a/bin/merge.py b/bin/merge.py
index 3cbdf6c..67c9cc9 100755
--- a/bin/merge.py
+++ b/bin/merge.py
@@ -858,6 +858,16 @@ def analyze_by_param(aggval, by_param, allvalues, name, key1, key2, param, param
if aggval[key1]['std_by_param'][param] > 0 and aggval[key1]['std_param'] / aggval[key1]['std_by_param'][param] < 0.6:
aggval[key1]['fit_guess'][param] = try_fits(name, key2, param_idx, by_param)
+def maybe_fit_function(aggval, model, by_param, parameters, name, key1, key2, unit):
+ if 'function' in model[key1] and 'user' in model[key1]['function']:
+ aggval[key1]['function']['user'] = {
+ 'raw' : model[key1]['function']['user']['raw'],
+ 'params' : model[key1]['function']['user']['params'],
+ }
+ fit_function(
+ aggval[key1]['function']['user'], name, key2, parameters, by_param,
+ yaxis='%s %s [%s]' % (name, key1, unit))
+
def analyze(by_name, by_param, by_trace, parameters):
aggdata = {
'state' : {},
@@ -907,14 +917,7 @@ def analyze(by_name, by_param, by_trace, parameters):
if isa == 'state':
fguess_to_function(name, 'means', aggval['power'], parameters, by_param,
'estimated %s power [µW]' % name)
- if 'function' in model['power'] and 'user' in model['power']['function']:
- aggval['power']['function']['user'] = {
- 'raw' : model['power']['function']['user']['raw'],
- 'params' : model['power']['function']['user']['params'],
- }
- fit_function(
- aggval['power']['function']['user'], name, 'means', parameters, by_param,
- yaxis='%s power [µW]' % name)
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'power', 'means', 'µW')
if aggval['power']['std_param'] > 0 and aggval['power']['std_trace'] / aggval['power']['std_param'] < 0.5:
aggval['power']['std_by_trace'] = mean_std_by_trace_part(by_trace, transition_names, name, 'means')
else:
@@ -926,48 +929,15 @@ def analyze(by_name, by_param, by_trace, parameters):
'estimated relative %s energy [pJ]' % name)
fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], parameters, by_param,
'estimated relative %s energy [pJ]' % name)
- if 'function' in model['duration'] and 'user' in model['duration']['function']:
- aggval['duration']['function']['user'] = {
- 'raw' : model['duration']['function']['user']['raw'],
- 'params' : model['duration']['function']['user']['params'],
- }
- fit_function(
- aggval['duration']['function']['user'], name, 'durations', parameters, by_param,
- yaxis='%s duration [µs]' % name)
- if 'function' in model['energy'] and 'user' in model['energy']['function']:
- aggval['energy']['function']['user'] = {
- 'raw' : model['energy']['function']['user']['raw'],
- 'params' : model['energy']['function']['user']['params'],
- }
- fit_function(
- aggval['energy']['function']['user'], name, 'energies', parameters, by_param,
- yaxis='%s energy [pJ]' % name)
- if 'function' in model['rel_energy_prev'] and 'user' in model['rel_energy_prev']['function']:
- aggval['rel_energy_prev']['function']['user'] = {
- 'raw' : model['rel_energy_prev']['function']['user']['raw'],
- 'params' : model['rel_energy_prev']['function']['user']['params'],
- }
- fit_function(
- aggval['rel_energy_prev']['function']['user'], name, 'rel_energies_prev', parameters, by_param,
- yaxis='%s rel_energy_prev [pJ]' % name)
- if 'function' in model['rel_energy_next'] and 'user' in model['rel_energy_next']['function']:
- aggval['rel_energy_next']['function']['user'] = {
- 'raw' : model['rel_energy_next']['function']['user']['raw'],
- 'params' : model['rel_energy_next']['function']['user']['params'],
- }
- fit_function(
- aggval['rel_energy_next']['function']['user'], name, 'rel_energies_next', parameters, by_param,
- yaxis='%s rel_energy_next [pJ]' % name)
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'duration', 'durations', 'µs')
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'energy', 'energies', 'pJ')
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'rel_energy_prev', 'rel_energies_prev', 'pJ')
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'rel_energy_next', 'rel_energies_next', 'pJ')
if 'function' in model['timeout'] and 'user' in model['timeout']['function']:
fguess_to_function(name, 'timeouts', aggval['timeout'], parameters, by_param,
'estimated %s timeout [µs]' % name)
- aggval['timeout']['function']['user'] = {
- 'raw' : model['timeout']['function']['user']['raw'],
- 'params' : model['timeout']['function']['user']['params'],
- }
- fit_function(
- aggval['timeout']['function']['user'], name, 'timeouts', parameters,
- by_param, yaxis='%s timeout [µs]' % name)
+ maybe_fit_function(aggval, model, by_param, parameters, name, 'timeout', 'timeouts', 'µs')
+ if 'function' in model['timeout'] and 'user' in model['timeout']['function']:
if aggval['timeout']['std_param'] > 0 and aggval['timeout']['std_trace'] / aggval['timeout']['std_param'] < 0.5:
aggval['timeout']['std_by_trace'] = mean_std_by_trace_part(by_trace, transition_names, name, 'timeouts')