summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorjfalkenhagen <jfalkenhagen@uos.de>2020-07-02 18:09:20 +0200
committerjfalkenhagen <jfalkenhagen@uos.de>2020-07-02 18:09:20 +0200
commit9075b8ffdbf15425e290747603450438513bca0c (patch)
tree77d5c7c133eafc366d5ac0d574beca50760c8f4e /bin
parente790c0ff3372b153c582b4adfc7f06a5ba86b5f6 (diff)
Proof_Of_Concept_PELT - Code aufgeräumt / Imports am Modulanfang / Typos fixed
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py77
1 files changed, 34 insertions, 43 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index 6912b02..452ff3f 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -1,40 +1,47 @@
-def plot_data_from_json(filename, trace_num, xaxis, yaxis):
- import matplotlib.pyplot as plt
- import json
+import matplotlib.pyplot as plt
+import json
+from kneed import KneeLocator
+import ruptures as rpt
+import time
+from multiprocessing import Pool, Manager
+import numpy as np
+import sys
+import getopt
+import re
+from dfatool.dfatool import RawData
+
+
+def plot_data_from_json(filename, trace_num, x_axis, y_axis):
with open(filename, 'r') as f:
tx_data = json.load(f)
print(tx_data[trace_num]['parameter'])
plt.plot(tx_data[trace_num]['offline'][0]['uW'])
- plt.xlabel(xaxis)
- plt.ylabel(yaxis)
+ plt.xlabel(x_axis)
+ plt.ylabel(y_axis)
plt.show()
-def plot_data_vs_mean(signal, xaxis, yaxis):
- import matplotlib.pyplot as plt
- from statistics import mean
+def plot_data_vs_mean(signal, x_axis, y_axis):
plt.plot(signal)
- average = mean(signal)
+ average = np.mean(signal)
plt.hlines(average, 0, len(signal))
- plt.xlabel(xaxis)
- plt.ylabel(yaxis)
+ plt.xlabel(x_axis)
+ plt.ylabel(y_axis)
plt.show()
-def plot_data_vs_data_vs_means(signal1, signal2, xaxis, yaxis):
- import matplotlib.pyplot as plt
- from statistics import mean
+def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis):
plt.plot(signal1)
lens = max(len(signal1), len(signal2))
- average = mean(signal1)
+ average = np.mean(signal1)
plt.hlines(average, 0, lens, color='red')
plt.vlines(len(signal1), 0, 100000, color='red', linestyles='dashed')
plt.plot(signal2)
- average = mean(signal2)
+ average = np.mean(signal2)
plt.hlines(average, 0, lens, color='green')
plt.vlines(len(signal2), 0, 100000, color='green', linestyles='dashed')
- plt.xlabel(xaxis)
- plt.ylabel(yaxis)
+ plt.xlabel(x_axis)
+ plt.ylabel(y_axis)
plt.show()
@@ -45,7 +52,6 @@ def get_bkps(algo, pen, q):
def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing', plotting=False):
- from kneed import KneeLocator
kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
if plotting:
kneedle.plot_knee()
@@ -53,13 +59,8 @@ def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing
return kneepoint
-def calc_PELT(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50, num_processes=8, refresh_delay=1,
+def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50, num_processes=8, refresh_delay=1,
refresh_thresh=5, S=1.0, pen_override=None, plotting=False):
- import ruptures as rpt
- import time
- import matplotlib.pylab as plt
- from multiprocessing import Pool, Manager
-
# default params in Function
if model is None:
model = 'l1'
@@ -104,7 +105,6 @@ def calc_PELT(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
# collect results from pool
result = p.starmap_async(get_bkps, args)
# monitor loop
- last_percentage = -1
percentage = -100 # Force display of 0%
i = 0
while True:
@@ -125,22 +125,21 @@ def calc_PELT(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
# DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
# split x and y coords to pass to kneedle
pen_val = [x[0] for x in res]
- fittet_bkps_val = [x[1] for x in res]
+ fitted_bkps_val = [x[1] for x in res]
# # plot to look at res
- knee = find_knee_point(pen_val, fittet_bkps_val, S=S, plotting=plotting)
+ knee = find_knee_point(pen_val, fitted_bkps_val, S=S, plotting=plotting)
plt.xlabel('Penalty')
plt.ylabel('Number of Changepoints')
- plt.plot(pen_val, fittet_bkps_val)
- plt.vlines(knee[0], 0, max(fittet_bkps_val), linestyles='dashed')
+ plt.plot(pen_val, fitted_bkps_val)
+ plt.vlines(knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
print("knee: " + str(knee[0]))
plt.show()
else:
# use forced pen value for plotting
knee = (pen_override, None)
-
- #plt.plot(pen_val, fittet_bkps_val)
+ # plt.plot(pen_val, fittet_bkps_val)
if knee[0] is not None:
bkps = algo.predict(pen=knee[0])
if plotting:
@@ -215,6 +214,7 @@ def needs_refinement_no_sort(signal, mean, thresh):
# Very short benchmark yielded approx. 3 times the speed of solution not using sort
+# TODO: Decide whether median is really the better baseline than mean
def needs_refinement(signal, thresh):
sorted_signal = sorted(signal)
length_of_signal = len(signal)
@@ -235,14 +235,6 @@ def needs_refinement(signal, thresh):
if __name__ == '__main__':
- import numpy as np
- import json
- import ruptures as rpt
- import matplotlib.pylab as plt
- import sys
- import getopt
- import re
- from dfatool.dfatool import RawData
# OPTION RECOGNITION
opt = dict()
@@ -357,8 +349,7 @@ if __name__ == '__main__':
print(err, file=sys.stderr)
sys.exit(2)
- #OPENING DATA
- import time
+ # OPENING DATA
if ".json" in opt_filename:
# open file with trace data from json
print("[INFO] Will only refine the state which is present in " + opt_filename + " if necessary.")
@@ -401,7 +392,7 @@ if __name__ == '__main__':
#
# for i in range(0, len(signal)):
# signal[i] = signal[i]/1000
- # bkps = calc_PELT(signal, model=opt_model, range_max=opt_range_max, num_processes=opt_num_processes, jump=opt_jump, S=opt_S)
+ # bkps = calc_pelt(signal, model=opt_model, range_max=opt_range_max, num_processes=opt_num_processes, jump=opt_jump, S=opt_S)
# fig, ax = rpt.display(signal, bkps)
# plt.xlabel('Time [us]')
# plt.ylabel('Power [mW]')