diff options
| author | Daniel Friesel <daniel.friesel@uos.de> | 2019-11-21 09:17:34 +0100 | 
|---|---|---|
| committer | Daniel Friesel <daniel.friesel@uos.de> | 2019-11-21 09:17:34 +0100 | 
| commit | 0c7da8eb44c0f3162829413baff0e9162566202d (patch) | |
| tree | 0d468ebfb73974029938ab86c708e384ba1a6d48 /bin | |
| parent | bffa9cba304c5ff1a2a11e1ea3a9b1fede1cacfb (diff) | |
autopep8 / flake8
Diffstat (limited to 'bin')
| -rwxr-xr-x | bin/eval-online-model-accuracy.py | 45 | ||||
| -rwxr-xr-x | bin/eval-rel-energy.py | 22 | 
2 files changed, 32 insertions, 35 deletions
| diff --git a/bin/eval-online-model-accuracy.py b/bin/eval-online-model-accuracy.py index 75e2a51..49157e5 100755 --- a/bin/eval-online-model-accuracy.py +++ b/bin/eval-online-model-accuracy.py @@ -22,18 +22,14 @@ Options:  """  import getopt -import json  import re -import runner  import sys -import time -import io  import itertools  import yaml  from automata import PTA -from codegen import * -from harness import OnboardTimerHarness +from codegen import get_simulated_accountingmethod  from dfatool import regression_measures +import numpy as np  opt = dict() @@ -64,16 +60,16 @@ if __name__ == '__main__':          raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))          opt_default = { -            'depth' : 3, -            'sleep' : 0, -            'timer-freq' : 1e6, -            'timer-type' : 'uint16_t', -            'timestamp-type' : 'uint16_t', -            'energy-type' : 'uint32_t', -            'power-type' : 'uint16_t', -            'timestamp-granularity' : 1e-6, -            'power-granularity' : 1e-6, -            'energy-granularity' : 1e-12, +            'depth': 3, +            'sleep': 0, +            'timer-freq': 1e6, +            'timer-type': 'uint16_t', +            'timestamp-type': 'uint16_t', +            'energy-type': 'uint32_t', +            'power-type': 'uint16_t', +            'timestamp-granularity': 1e-6, +            'power-granularity': 1e-6, +            'energy-granularity': 1e-12,          }          for option, parameter in raw_opts: @@ -121,7 +117,7 @@ if __name__ == '__main__':      pta.set_random_energy_model() -    runs = list(pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = opt['sleep'])) +    runs = list(pta.dfs(opt['depth'], with_arguments=True, with_parameters=True, trace_filter=opt['trace-filter'], sleep=opt['sleep']))      num_transitions = len(runs) @@ -134,8 +130,8 @@ if __name__ == '__main__':      model_energies = list()      for run in runs:          accounting_method = get_simulated_accountingmethod(opt['accounting'])(pta, opt['timer-freq'], opt['timer-type'], opt['timestamp-type'], -            opt['power-type'], opt['energy-type']) -        real_energy, real_duration, _, _ = pta.simulate(run, accounting = accounting_method) +                                                                              opt['power-type'], opt['energy-type']) +        real_energy, real_duration, _, _ = pta.simulate(run, accounting=accounting_method)          model_energy = accounting_method.get_energy()          real_energies.append(real_energy)          real_durations.append(real_duration) @@ -144,7 +140,6 @@ if __name__ == '__main__':      measures = regression_measures(np.array(model_energies), np.array(real_energies))      print('SMAPE {:.0f}%, MAE {}'.format(measures['smape'], measures['mae'])) -      timer_freqs = [1e3, 2e3, 5e3, 1e4, 2e4, 5e4, 1e5, 2e5, 5e5, 1e6, 2e6, 5e6]      timer_types = timestamp_types = power_types = energy_types = 'uint8_t uint16_t uint32_t uint64_t'.split() @@ -161,7 +156,7 @@ if __name__ == '__main__':                  base_weight += 8          return base_weight -    #sys.exit(0) +    # sys.exit(0)      mean_errors = list()      for timer_freq, timer_type, ts_type, power_type, energy_type in itertools.product(timer_freqs, timer_types, timestamp_types, power_types, energy_types): @@ -171,10 +166,10 @@ if __name__ == '__main__':          # duration in µs          # Bei kurzer Dauer (z.B. nur [1e2]) performt auc uint32_t für Energie gut, sonst nicht so (weil overflow)          for sleep_duration in [1e2, 1e3, 1e4, 1e5, 1e6]: -            runs = pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter'], sleep = sleep_duration) +            runs = pta.dfs(opt['depth'], with_arguments=True, with_parameters=True, trace_filter=opt['trace-filter'], sleep=sleep_duration)              for run in runs:                  accounting_method = get_simulated_accountingmethod(opt['accounting'])(pta, timer_freq, timer_type, ts_type, power_type, energy_type) -                real_energy, real_duration, _, _ = pta.simulate(run, accounting = accounting_method) +                real_energy, real_duration, _, _ = pta.simulate(run, accounting=accounting_method)                  model_energy = accounting_method.get_energy()                  real_energies.append(real_energy)                  real_durations.append(real_duration) @@ -182,8 +177,8 @@ if __name__ == '__main__':          measures = regression_measures(np.array(model_energies), np.array(real_energies))          mean_errors.append(((timer_freq, timer_type, ts_type, power_type, energy_type), config_weight(timer_freq, timer_type, ts_type, power_type, energy_type), measures)) -    mean_errors.sort(key = lambda x: x[1]) -    mean_errors.sort(key = lambda x: x[2]['mae']) +    mean_errors.sort(key=lambda x: x[1]) +    mean_errors.sort(key=lambda x: x[2]['mae'])      for result in mean_errors:          config, weight, measures = result diff --git a/bin/eval-rel-energy.py b/bin/eval-rel-energy.py index 123fe9f..4803c51 100755 --- a/bin/eval-rel-energy.py +++ b/bin/eval-rel-energy.py @@ -7,16 +7,18 @@ from dfatool import PTAModel, RawData, pta_trace_to_aggregate  opts = {} +  def get_file_groups(args):      groups = []      index_low = 0 -    while ':' in args[index_low : ]: -        index_high = args[index_low : ].index(':') + index_low -        groups.append(args[index_low : index_high]) +    while ':' in args[index_low:]: +        index_high = args[index_low:].index(':') + index_low +        groups.append(args[index_low: index_high])          index_low = index_high + 1 -    groups.append(args[index_low : ]) +    groups.append(args[index_low:])      return groups +  if __name__ == '__main__':      ignored_trace_indexes = [] @@ -72,14 +74,14 @@ if __name__ == '__main__':          print('{}:'.format(' '.join(file_group)))          raw_data = RawData(file_group) -        preprocessed_data = raw_data.get_preprocessed_data(verbose = False) +        preprocessed_data = raw_data.get_preprocessed_data(verbose=False)          by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)          model = PTAModel(by_name, parameters, arg_count, -            traces = preprocessed_data, -            ignore_trace_indexes = ignored_trace_indexes, -            discard_outliers = discard_outliers, -            function_override = function_override, -            verbose = False) +                         traces=preprocessed_data, +                         ignore_trace_indexes=ignored_trace_indexes, +                         discard_outliers=discard_outliers, +                         function_override=function_override, +                         verbose=False)          lut_quality = model.assess(model.get_param_lut()) | 
