summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2017-04-04 15:11:31 +0200
committerDaniel Friesel <derf@finalrewind.org>2017-04-04 15:11:31 +0200
commit398f3d6d86433c32a5b69b3581b4a32e5d22410d (patch)
tree3afe91fcaa42e8e75837c5d28f77fa3576761756 /bin
parent418111ca15c3949a9a29b5ebbe908571ed601e1b (diff)
split up rel_energy inte relative energy to previous state and to next state
Diffstat (limited to 'bin')
-rwxr-xr-xbin/merge.py147
1 files changed, 94 insertions, 53 deletions
diff --git a/bin/merge.py b/bin/merge.py
index 1ff7e74..b0d7d22 100755
--- a/bin/merge.py
+++ b/bin/merge.py
@@ -9,6 +9,7 @@ import sys
import plotter
from copy import deepcopy
from dfatool import aggregate_measures, regression_measures, is_numeric, powerset
+from dfatool import append_if_set, mean_or_none
from matplotlib.patches import Polygon
from scipy import optimize
@@ -42,17 +43,21 @@ def mimosa_data(elem):
substate_thresholds = []
substate_data = []
timeouts = []
- rel_energies = []
+ rel_energies_prev = []
+ rel_energies_next = []
if 'timeout' in elem['offline'][0]:
timeouts = [x['timeout'] for x in elem['offline']]
- if 'uW_mean_delta' in elem['offline'][0]:
- rel_energies = [x['uW_mean_delta'] * (x['us'] - 20) for x in elem['offline']]
+ if 'uW_mean_delta_prev' in elem['offline'][0]:
+ rel_energies_prev = [x['uW_mean_delta_prev'] * (x['us'] - 20) for x in elem['offline']]
+ if 'uW_mean_delta_next' in elem['offline'][0]:
+ rel_energies_next = [x['uW_mean_delta_next'] * (x['us'] - 20) for x in elem['offline']]
for x in elem['offline']:
if 'substates' in x:
substate_thresholds.append(x['substates']['threshold'])
substate_data.append(x['substates']['states'])
- return means, stds, durations, energies, rel_energies, clips, timeouts, substate_thresholds
+ return (means, stds, durations, energies, rel_energies_prev,
+ rel_energies_next, clips, timeouts, substate_thresholds)
def online_data(elem):
means = [int(x['power']) for x in elem['online']]
@@ -254,8 +259,8 @@ def xv_assess_function(name, funbase, what, validation, mae, smape):
mae[name] = []
if not name in smape:
smape[name] = []
- mae[name].append(goodness['mae'])
- smape[name].append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(smape, goodness, 'smape')
def xv2_assess_function(name, funbase, what, validation, mae, smape, rmsd):
goodness = assess_function(funbase, name, what, parameters, validation)
@@ -311,15 +316,19 @@ def fake_add_data_to_aggregate(aggregate, key, isa, database, idx):
timeout_val = []
if len(database['timeouts']):
timeout_val = [database['timeouts'][idx]]
- rel_energy_val = []
- if len(database['rel_energies']):
- rel_energy_val = [database['rel_energies'][idx]]
+ rel_energy_p_val = []
+ if len(database['rel_energies_prev']):
+ rel_energy_p_val = [database['rel_energies_prev'][idx]]
+ rel_energy_n_val = []
+ if len(database['rel_energies_next']):
+ rel_energy_n_val = [database['rel_energies_next'][idx]]
add_data_to_aggregate(aggregate, key, isa, {
'means' : [database['means'][idx]],
'stds' : [database['stds'][idx]],
'durations' : [database['durations'][idx]],
'energies' : [database['energies'][idx]],
- 'rel_energies' : rel_energy_val,
+ 'rel_energies_prev' : rel_energy_p_val,
+ 'rel_energies_next' : rel_energy_n_val,
'clip_rate' : [database['clip_rate'][idx]],
'timeouts' : timeout_val,
})
@@ -377,7 +386,7 @@ def mean_std_by_trace_part(data, transitions, name, what):
def load_run_elem(index, element, trace, by_name, by_param, by_trace):
- means, stds, durations, energies, rel_energies, clips, timeouts, sub_thresholds = mimosa_data(element)
+ means, stds, durations, energies, rel_energies_prev, rel_energies_next, clips, timeouts, sub_thresholds = mimosa_data(element)
online_means = []
online_durations = []
@@ -394,7 +403,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -407,7 +417,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -419,7 +430,8 @@ def load_run_elem(index, element, trace, by_name, by_param, by_trace):
'stds' : stds,
'durations' : durations,
'energies' : energies,
- 'rel_energies' : rel_energies,
+ 'rel_energies_prev' : rel_energies_prev,
+ 'rel_energies_next' : rel_energies_next,
'clip_rate' : clips,
'timeouts' : timeouts,
'sub_thresholds' : sub_thresholds,
@@ -487,16 +499,14 @@ def param_measures(name, paramdata, key, fun):
# Mean ist besseres für SSR. Da least_squares SSR optimiert
# nutzen wir hier auch Mean.
goodness = aggregate_measures(fun(pval[key]), pval[key])
- mae.append(goodness['mae'])
- rmsd.append(goodness['rmsd'])
- if 'smape' in goodness:
- smape.append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(rmsd, goodness, 'rmsd')
+ append_if_set(smape, goodness, 'smape')
ret = {
- 'mae' : np.mean(mae),
- 'rmsd' : np.mean(rmsd)
+ 'mae' : mean_or_none(mae),
+ 'rmsd' : mean_or_none(rmsd),
+ 'smape' : mean_or_none(smape)
}
- if len(smape):
- ret['smape'] = np.mean(smape)
return ret
@@ -548,10 +558,9 @@ def val_run(aggdata, split_fun, count):
validation = aggdata[pairs[i][1]]
median = np.median(training)
goodness = aggregate_measures(median, validation)
- mae.append(goodness['mae'])
- rmsd.append(goodness['rmsd'])
- if 'smape' in goodness:
- smape.append(goodness['smape'])
+ append_if_set(mae, goodness, 'mae')
+ append_if_set(rmsd, goodness, 'rmsd')
+ append_if_set(smape, goodness, 'smape')
mae_mean = np.mean(mae)
rmsd_mean = np.mean(rmsd)
@@ -628,7 +637,8 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
isa = by_name[name]['isa']
by_name[name]['means'] = np.array(by_name[name]['means'])
by_name[name]['energies'] = np.array(by_name[name]['energies'])
- by_name[name]['rel_energies'] = np.array(by_name[name]['rel_energies'])
+ by_name[name]['rel_energies_prev'] = np.array(by_name[name]['rel_energies_prev'])
+ by_name[name]['rel_energies_next'] = np.array(by_name[name]['rel_energies_next'])
by_name[name]['durations'] = np.array(by_name[name]['durations'])
if isa == 'state':
@@ -641,10 +651,14 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
print('%16s, static energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['energies'], splitidx_kfold, 10)
print('%16s, static energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies'], splitidx_srs, 200)
- print('%16s, static rel_energy, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
- mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies'], splitidx_kfold, 10)
- print('%16s, static rel_energy, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_srs, 200)
+ print('%16s, static rel_energy_p, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_prev'], splitidx_kfold, 10)
+ print('%16s, static rel_energy_p, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_srs, 200)
+ print('%16s, static rel_energy_n, Monte Carlo: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
+ mae_mean, smape_mean, rms_mean = val_run(by_name[name]['rel_energies_next'], splitidx_kfold, 10)
+ print('%16s, static rel_energy_n, 10-fold sys: MAE %8.f pJ, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_srs, 200)
print('%16s, static duration, Monte Carlo: MAE %8.f µs, SMAPE %6.2f%%, RMS %d' % (name, mae_mean, smape_mean, rms_mean))
mae_mean, smape_mean, rms_mean = val_run(by_name[name]['durations'], splitidx_kfold, 10)
@@ -701,11 +715,16 @@ def crossvalidate(by_name, by_param, by_trace, model, parameters):
val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'user', 'pJ')
if 'estimate' in model[isa][name]['energy']['function']:
val_run_funs(by_name, by_trace, name, 'energies', 'energy', 'estimate', 'pJ')
- if 'rel_energy' in model[isa][name] and 'function' in model[isa][name]['rel_energy']:
- if 'user' in model[isa][name]['rel_energy']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies', 'rel_energy', 'user', 'pJ')
- if 'estimate' in model[isa][name]['rel_energy']['function']:
- val_run_funs(by_name, by_trace, name, 'rel_energies', 'rel_energy', 'estimate', 'pJ')
+ if 'rel_energy_prev' in model[isa][name] and 'function' in model[isa][name]['rel_energy_prev']:
+ if 'user' in model[isa][name]['rel_energy_prev']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'user', 'pJ')
+ if 'estimate' in model[isa][name]['rel_energy_prev']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_prev', 'rel_energy_prev', 'estimate', 'pJ')
+ if 'rel_energy_next' in model[isa][name] and 'function' in model[isa][name]['rel_energy_next']:
+ if 'user' in model[isa][name]['rel_energy_next']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'user', 'pJ')
+ if 'estimate' in model[isa][name]['rel_energy_next']['function']:
+ val_run_funs(by_name, by_trace, name, 'rel_energies_next', 'rel_energy_next', 'estimate', 'pJ')
return
for i, param in enumerate(parameters):
@@ -819,11 +838,18 @@ def validate(by_name, by_param, parameters):
'std_inner' : np.std(val['energies']),
'function' : {},
},
- 'rel_energy' : {
- 'goodness' : aggregate_measures(model['rel_energy']['static'], val['rel_energies']),
- 'median' : np.median(val['rel_energies']),
- 'mean' : np.mean(val['rel_energies']),
- 'std_inner' : np.std(val['rel_energies']),
+ 'rel_energy_prev' : {
+ 'goodness' : aggregate_measures(model['rel_energy_prev']['static'], val['rel_energies_prev']),
+ 'median' : np.median(val['rel_energies_prev']),
+ 'mean' : np.mean(val['rel_energies_prev']),
+ 'std_inner' : np.std(val['rel_energies_prev']),
+ 'function' : {},
+ },
+ 'rel_energy_next' : {
+ 'goodness' : aggregate_measures(model['rel_energy_next']['static'], val['rel_energies_next']),
+ 'median' : np.median(val['rel_energies_next']),
+ 'mean' : np.mean(val['rel_energies_next']),
+ 'std_inner' : np.std(val['rel_energies_next']),
'function' : {},
},
'clip' : {
@@ -874,7 +900,8 @@ def analyze(by_name, by_param, by_trace, parameters):
aggval['power']['std_outer'] = np.mean(val['stds'])
if isa == 'transition':
- aggval['rel_energy'] = keydata(name, val, by_param, by_trace, 'rel_energies')
+ aggval['rel_energy_prev'] = keydata(name, val, by_param, by_trace, 'rel_energies_prev')
+ aggval['rel_energy_next'] = keydata(name, val, by_param, by_trace, 'rel_energies_next')
if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']:
aggval['timeout'] = keydata(name, val, by_param, by_trace, 'timeouts')
@@ -898,10 +925,14 @@ def analyze(by_name, by_param, by_trace, parameters):
by_param, allvalues, name, 'energies', i)
if aggval['energy']['std_by_param'][param] > 0 and aggval['energy']['std_param'] / aggval['energy']['std_by_param'][param] < 0.6:
aggval['energy']['fit_guess'][param] = try_fits(name, 'energies', i, by_param)
- aggval['rel_energy']['std_by_param'][param] = mean_std_by_param(
- by_param, allvalues, name, 'rel_energies', i)
- if aggval['rel_energy']['std_by_param'][param] > 0 and aggval['rel_energy']['std_param'] / aggval['rel_energy']['std_by_param'][param] < 0.6:
- aggval['rel_energy']['fit_guess'][param] = try_fits(name, 'rel_energies', i, by_param)
+ aggval['rel_energy_prev']['std_by_param'][param] = mean_std_by_param(
+ by_param, allvalues, name, 'rel_energies_prev', i)
+ if aggval['rel_energy_prev']['std_by_param'][param] > 0 and aggval['rel_energy_prev']['std_param'] / aggval['rel_energy_prev']['std_by_param'][param] < 0.6:
+ aggval['rel_energy_prev']['fit_guess'][param] = try_fits(name, 'rel_energies_prev', i, by_param)
+ aggval['rel_energy_next']['std_by_param'][param] = mean_std_by_param(
+ by_param, allvalues, name, 'rel_energies_next', i)
+ if aggval['rel_energy_next']['std_by_param'][param] > 0 and aggval['rel_energy_next']['std_param'] / aggval['rel_energy_next']['std_by_param'][param] < 0.6:
+ aggval['rel_energy_next']['fit_guess'][param] = try_fits(name, 'rel_energies_next', i, by_param)
if isa == 'transition' and 'function' in data['model']['transition'][name]['timeout']:
aggval['timeout']['std_by_param'][param] = mean_std_by_param(
by_param, allvalues, name, 'timeouts', i)
@@ -926,7 +957,9 @@ def analyze(by_name, by_param, by_trace, parameters):
'estimated %s duration [µs]' % name)
fguess_to_function(name, 'energies', aggval['energy'], parameters, by_param,
'estimated %s energy [pJ]' % name)
- fguess_to_function(name, 'rel_energies', aggval['rel_energy'], parameters, by_param,
+ fguess_to_function(name, 'rel_energies_prev', aggval['rel_energy_prev'], parameters, by_param,
+ 'estimated relative %s energy [pJ]' % name)
+ fguess_to_function(name, 'rel_energies_next', aggval['rel_energy_next'], parameters, by_param,
'estimated relative %s energy [pJ]' % name)
if 'function' in model['duration'] and 'user' in model['duration']['function']:
aggval['duration']['function']['user'] = {
@@ -944,14 +977,22 @@ def analyze(by_name, by_param, by_trace, parameters):
fit_function(
aggval['energy']['function']['user'], name, 'energies', parameters, by_param,
yaxis='%s energy [pJ]' % name)
- if 'function' in model['rel_energy'] and 'user' in model['rel_energy']['function']:
- aggval['rel_energy']['function']['user'] = {
- 'raw' : model['rel_energy']['function']['user']['raw'],
- 'params' : model['rel_energy']['function']['user']['params'],
+ if 'function' in model['rel_energy_prev'] and 'user' in model['rel_energy_prev']['function']:
+ aggval['rel_energy_prev']['function']['user'] = {
+ 'raw' : model['rel_energy_prev']['function']['user']['raw'],
+ 'params' : model['rel_energy_prev']['function']['user']['params'],
+ }
+ fit_function(
+ aggval['rel_energy_prev']['function']['user'], name, 'rel_energies_prev', parameters, by_param,
+ yaxis='%s rel_energy_prev [pJ]' % name)
+ if 'function' in model['rel_energy_next'] and 'user' in model['rel_energy_next']['function']:
+ aggval['rel_energy_next']['function']['user'] = {
+ 'raw' : model['rel_energy_next']['function']['user']['raw'],
+ 'params' : model['rel_energy_next']['function']['user']['params'],
}
fit_function(
- aggval['rel_energy']['function']['user'], name, 'rel_energies', parameters, by_param,
- yaxis='%s rel_energy [pJ]' % name)
+ aggval['rel_energy_next']['function']['user'], name, 'rel_energies_next', parameters, by_param,
+ yaxis='%s rel_energy_next [pJ]' % name)
if 'function' in model['timeout'] and 'user' in model['timeout']['function']:
fguess_to_function(name, 'timeouts', aggval['timeout'], parameters, by_param,
'estimated %s timeout [µs]' % name)