summaryrefslogtreecommitdiff
path: root/lib/data_parameters.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2019-03-21 16:38:41 +0100
committerDaniel Friesel <derf@finalrewind.org>2019-03-21 16:38:41 +0100
commit6cb14ddacffcff3c6844429997a058c7826ec048 (patch)
tree43f2e1156105b2893be90beb69546189212527d2 /lib/data_parameters.py
parentd09e371e5dc861aeb7407d05e5c58b28ed15e4ad (diff)
Protolog: Handle erroneous cycle measurements
Diffstat (limited to 'lib/data_parameters.py')
-rw-r--r--lib/data_parameters.py49
1 files changed, 33 insertions, 16 deletions
diff --git a/lib/data_parameters.py b/lib/data_parameters.py
index 7392cbd..f82df62 100644
--- a/lib/data_parameters.py
+++ b/lib/data_parameters.py
@@ -116,26 +116,35 @@ class Protolog:
text_{nop,ser,serdes} : whole-program Text Segment (code/Flash) size
"""
+ def _mean_cycles(data, key):
+ # There should always be more than just one measurement -- otherwise
+ # something went wrong
+ if len(data[key]) <= 1:
+ return np.nan
+ for val in data[key]:
+ # bogus data
+ if val > 10_000_000:
+ return np.nan
+ for val in data['nop']:
+ # bogus data
+ if val > 10_000_000:
+ return np.nan
+ return max(0, int(np.mean(data[key][1:]) - np.mean(data['nop'][1:])))
+
idem = lambda x: x
datamap = [
['bss_nop', 'bss_size_nop', idem],
['bss_ser', 'bss_size_ser', idem],
['bss_serdes', 'bss_size_serdes', idem],
['callcycles_raw', 'callcycles', idem],
- ['cycles_ser', 'cycles', lambda x: max(0, int(np.mean(x['ser']) - np.mean(x['nop'])))],
- ['cycles_des', 'cycles', lambda x: max(0, int(np.mean(x['des']) - np.mean(x['nop'])))],
- ['cycles_enc', 'cycles', lambda x: max(0, int(np.mean(x['enc']) - np.mean(x['nop'])))],
- ['cycles_dec', 'cycles', lambda x: max(0, int(np.mean(x['dec']) - np.mean(x['nop'])))],
- ['cycles_encser', 'cycles', lambda x:
- int(np.mean(x['ser']) + np.mean(x['enc']) - 2 * np.mean(x['nop']))
- ],
- ['cycles_desdec', 'cycles', lambda x:
- int(np.mean(x['des']) + np.mean(x['dec']) - 2 * np.mean(x['nop']))
- ],
- ['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser']) - np.mean(x['nop'])],
- ['cycles_des_arr', 'cycles', lambda x: np.array(x['des']) - np.mean(x['nop'])],
- ['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc']) - np.mean(x['nop'])],
- ['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec']) - np.mean(x['nop'])],
+ ['cycles_ser', 'cycles', lambda x: Protolog._mean_cycles(x, 'ser')],
+ ['cycles_des', 'cycles', lambda x: Protolog._mean_cycles(x, 'des')],
+ ['cycles_enc', 'cycles', lambda x: Protolog._mean_cycles(x, 'enc')],
+ ['cycles_dec', 'cycles', lambda x: Protolog._mean_cycles(x, 'dec')],
+ #['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser'][1:]) - np.mean(x['nop'][1:])],
+ #['cycles_des_arr', 'cycles', lambda x: np.array(x['des'][1:]) - np.mean(x['nop'][1:])],
+ #['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc'][1:]) - np.mean(x['nop'][1:])],
+ #['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec'][1:]) - np.mean(x['nop'][1:])],
['data_nop', 'data_size_nop', idem],
['data_ser', 'data_size_ser', idem],
['data_serdes', 'data_size_serdes', idem],
@@ -176,15 +185,23 @@ class Protolog:
except KeyError:
pass
except TypeError as e:
- print('TypeError in {} {} {} {}: {}'.format(
+ print('TypeError in {} {} {} {}: {} -> {}'.format(
arch_lib, benchmark, benchmark_item, aggregate_label,
- str(e)))
+ subv[data_label]['v'], str(e)))
pass
for key in self.aggregate.keys():
for arch in self.aggregate[key].keys():
for lib, val in self.aggregate[key][arch].items():
try:
+ val['cycles_encser'] = val['cycles_enc'] + val['cycles_ser']
+ except KeyError:
+ pass
+ try:
+ val['cycles_desdec'] = val['cycles_des'] + val['cycles_dec']
+ except KeyError:
+ pass
+ try:
val['total_dmem_ser'] = val['stack_alloc_ser']
val['total_dmem_ser'] += val['heap_ser']
except KeyError: