diff options
author | Daniel Friesel <derf@finalrewind.org> | 2019-03-21 16:38:41 +0100 |
---|---|---|
committer | Daniel Friesel <derf@finalrewind.org> | 2019-03-21 16:38:41 +0100 |
commit | 6cb14ddacffcff3c6844429997a058c7826ec048 (patch) | |
tree | 43f2e1156105b2893be90beb69546189212527d2 /lib/data_parameters.py | |
parent | d09e371e5dc861aeb7407d05e5c58b28ed15e4ad (diff) |
Protolog: Handle erroneous cycle measurements
Diffstat (limited to 'lib/data_parameters.py')
-rw-r--r-- | lib/data_parameters.py | 49 |
1 files changed, 33 insertions, 16 deletions
diff --git a/lib/data_parameters.py b/lib/data_parameters.py index 7392cbd..f82df62 100644 --- a/lib/data_parameters.py +++ b/lib/data_parameters.py @@ -116,26 +116,35 @@ class Protolog: text_{nop,ser,serdes} : whole-program Text Segment (code/Flash) size """ + def _mean_cycles(data, key): + # There should always be more than just one measurement -- otherwise + # something went wrong + if len(data[key]) <= 1: + return np.nan + for val in data[key]: + # bogus data + if val > 10_000_000: + return np.nan + for val in data['nop']: + # bogus data + if val > 10_000_000: + return np.nan + return max(0, int(np.mean(data[key][1:]) - np.mean(data['nop'][1:]))) + idem = lambda x: x datamap = [ ['bss_nop', 'bss_size_nop', idem], ['bss_ser', 'bss_size_ser', idem], ['bss_serdes', 'bss_size_serdes', idem], ['callcycles_raw', 'callcycles', idem], - ['cycles_ser', 'cycles', lambda x: max(0, int(np.mean(x['ser']) - np.mean(x['nop'])))], - ['cycles_des', 'cycles', lambda x: max(0, int(np.mean(x['des']) - np.mean(x['nop'])))], - ['cycles_enc', 'cycles', lambda x: max(0, int(np.mean(x['enc']) - np.mean(x['nop'])))], - ['cycles_dec', 'cycles', lambda x: max(0, int(np.mean(x['dec']) - np.mean(x['nop'])))], - ['cycles_encser', 'cycles', lambda x: - int(np.mean(x['ser']) + np.mean(x['enc']) - 2 * np.mean(x['nop'])) - ], - ['cycles_desdec', 'cycles', lambda x: - int(np.mean(x['des']) + np.mean(x['dec']) - 2 * np.mean(x['nop'])) - ], - ['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser']) - np.mean(x['nop'])], - ['cycles_des_arr', 'cycles', lambda x: np.array(x['des']) - np.mean(x['nop'])], - ['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc']) - np.mean(x['nop'])], - ['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec']) - np.mean(x['nop'])], + ['cycles_ser', 'cycles', lambda x: Protolog._mean_cycles(x, 'ser')], + ['cycles_des', 'cycles', lambda x: Protolog._mean_cycles(x, 'des')], + ['cycles_enc', 'cycles', lambda x: Protolog._mean_cycles(x, 'enc')], + ['cycles_dec', 'cycles', lambda x: Protolog._mean_cycles(x, 'dec')], + #['cycles_ser_arr', 'cycles', lambda x: np.array(x['ser'][1:]) - np.mean(x['nop'][1:])], + #['cycles_des_arr', 'cycles', lambda x: np.array(x['des'][1:]) - np.mean(x['nop'][1:])], + #['cycles_enc_arr', 'cycles', lambda x: np.array(x['enc'][1:]) - np.mean(x['nop'][1:])], + #['cycles_dec_arr', 'cycles', lambda x: np.array(x['dec'][1:]) - np.mean(x['nop'][1:])], ['data_nop', 'data_size_nop', idem], ['data_ser', 'data_size_ser', idem], ['data_serdes', 'data_size_serdes', idem], @@ -176,15 +185,23 @@ class Protolog: except KeyError: pass except TypeError as e: - print('TypeError in {} {} {} {}: {}'.format( + print('TypeError in {} {} {} {}: {} -> {}'.format( arch_lib, benchmark, benchmark_item, aggregate_label, - str(e))) + subv[data_label]['v'], str(e))) pass for key in self.aggregate.keys(): for arch in self.aggregate[key].keys(): for lib, val in self.aggregate[key][arch].items(): try: + val['cycles_encser'] = val['cycles_enc'] + val['cycles_ser'] + except KeyError: + pass + try: + val['cycles_desdec'] = val['cycles_des'] + val['cycles_dec'] + except KeyError: + pass + try: val['total_dmem_ser'] = val['stack_alloc_ser'] val['total_dmem_ser'] += val['heap_ser'] except KeyError: |