summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2019-10-22 15:14:36 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2019-10-22 15:14:36 +0200
commit3ae8c845103e2ad4f577c4bf195a1e81899cf518 (patch)
tree291fd6cafc9527efaf3fe503ea102b720ae38df7 /lib/dfatool.py
parent4d8e84f322d704bb01d31190f3afa8b9eef81c86 (diff)
dfatool: split up assess and assess_on_traces
Diffstat (limited to 'lib/dfatool.py')
-rw-r--r--lib/dfatool.py45
1 files changed, 25 insertions, 20 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 363c2a2..4ba4911 100644
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -1743,15 +1743,32 @@ class PTAModel:
The by_name entries of this PTAModel are used as ground truth and
compared with the values predicted by model_function.
- If 'traces' was set when creating this object, the model quality is
- also assessed on a per-trace basis.
-
For proper model assessments, the data used to generate model_function
and the data fed into this AnalyticModel instance must be mutually
exclusive (e.g. by performing cross validation). Otherwise,
overfitting cannot be detected.
"""
detailed_results = {}
+ for name, elem in sorted(self.by_name.items()):
+ detailed_results[name] = {}
+ for key in elem['attributes']:
+ predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
+ measures = regression_measures(predicted_data, elem[key])
+ detailed_results[name][key] = measures
+
+ return {
+ 'by_name' : detailed_results
+ }
+
+
+ def assess_on_traces(self, model_function):
+ """
+ Calculate MAE, SMAPE, etc. of model_function for each trace known to this PTAModel instance.
+
+ :returns: dict of `duration_by_trace`, `energy_by_trace`, `timeout_by_trace`, `rel_energy_by_trace` and `state_energy_by_trace`.
+ Each entry holds regression measures for the corresponding measure. Note that the determined model quality heavily depends on the
+ traces: small-ish absolute errors in states which frequently occur may have more effect than large absolute errors in rarely occuring states
+ """
model_energy_list = []
real_energy_list = []
model_rel_energy_list = []
@@ -1760,12 +1777,6 @@ class PTAModel:
real_duration_list = []
model_timeout_list = []
real_timeout_list = []
- for name, elem in sorted(self.by_name.items()):
- detailed_results[name] = {}
- for key in elem['attributes']:
- predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
- measures = regression_measures(predicted_data, elem[key])
- detailed_results[name][key] = measures
for trace in self.traces:
if trace['id'] not in self.ignore_trace_indexes:
@@ -1818,21 +1829,15 @@ class PTAModel:
real_timeout_list.append(real_timeout)
model_timeout_list.append(model_timeout)
- if len(self.traces):
- return {
- 'by_name' : detailed_results,
- 'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
- 'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
- 'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
- 'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
- 'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
- }
return {
- 'by_name' : detailed_results
+ 'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
+ 'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
+ 'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
+ 'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
+ 'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
}
-
class MIMOSA:
"""
MIMOSA log loader for DFA traces with auto-calibration.