summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2018-01-26 12:32:49 +0100
committerDaniel Friesel <derf@finalrewind.org>2018-01-26 12:32:49 +0100
commit3ecf5ee900b6a7a202ee2f280d628abae2a4cb91 (patch)
tree2bdc224e1f90f79c4191019e18f6f78b7288fa88 /lib/dfatool.py
parent7d06a51248574742a25c935f11ce95156afa06ca (diff)
support analyzing multiple measurements at once
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py76
1 files changed, 45 insertions, 31 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 41d5d37..fa91fc2 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -104,8 +104,8 @@ def _preprocess_measurement(measurement):
vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
processed_data = {
+ 'fileno' : measurement['fileno'],
'info' : measurement['info'],
- 'setup' : measurement['setup'],
'triggers' : len(trigidx),
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
@@ -116,8 +116,10 @@ def _preprocess_measurement(measurement):
class RawData:
- def __init__(self, filename):
- self.filename = filename
+ def __init__(self, filenames):
+ self.filenames = filenames.copy()
+ self.traces_by_fileno = []
+ self.setup_by_fileno = []
self.version = 0
self.preprocessed = False
@@ -139,25 +141,30 @@ class RawData:
return offline['us'] > state_duration * 1500
def _measurement_is_valid(self, processed_data):
- state_duration = processed_data['setup']['state_duration']
+ setup = self.setup_by_fileno[processed_data['fileno']]
+ traces = self.traces_by_fileno[processed_data['fileno']]
+ state_duration = setup['state_duration']
# Check trigger count
- if self.sched_trigger_count != processed_data['triggers']:
+ sched_trigger_count = 0
+ for run in traces:
+ sched_trigger_count += len(run['trace'])
+ if sched_trigger_count != processed_data['triggers']:
processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
got = processed_data['triggers'],
- exp = self.sched_trigger_count
+ exp = sched_trigger_count
)
return False
# Check state durations. Very short or long states can indicate a
# missed trigger signal which wasn't detected due to duplicate
# triggers elsewhere
online_datapoints = []
- for run_idx, run in enumerate(self.traces):
+ for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = processed_data['trace'][offline_idx]
- online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx]
+ online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if online_trace_part['isa'] != offline_trace_part['isa']:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
@@ -169,8 +176,8 @@ class RawData:
return False
if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
- online_prev_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx-1]
- online_next_transition = self.traces[online_run_idx]['trace'][online_trace_part_idx+1]
+ online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
+ online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
try:
if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
@@ -193,13 +200,14 @@ class RawData:
def _merge_measurement_into_online_data(self, measurement):
online_datapoints = []
- for run_idx, run in enumerate(self.traces):
+ traces = self.traces_by_fileno[measurement['fileno']]
+ for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = measurement['trace'][offline_idx]
- online_trace_part = self.traces[online_run_idx]['trace'][online_trace_part_idx]
+ online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if not 'offline' in online_trace_part:
online_trace_part['offline'] = [offline_trace_part]
@@ -240,6 +248,10 @@ class RawData:
online_trace_part['offline_aggregates']['rel_energy_next'].append(
offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
+ def _concatenate_analyzed_traces(self):
+ self.traces = []
+ for trace in self.traces_by_fileno:
+ self.traces.extend(trace)
def get_preprocessed_data(self):
if self.preprocessed:
@@ -252,36 +264,38 @@ class RawData:
# Loads raw MIMOSA data and turns it into measurements which are ready to
# be analyzed.
def preprocess_0(self):
- with tarfile.open(self.filename) as tf:
- setup = json.load(tf.extractfile('setup.json'))
- self.traces = json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json'))
- mim_files = []
- for member in tf.getmembers():
- _, extension = os.path.splitext(member.name)
- if extension == '.mim':
- mim_files.append({
- 'setup' : setup,
- 'info' : member,
- 'content' : tf.extractfile(member).read()
- })
- with Pool() as pool:
- measurements = pool.map(_preprocess_measurement, mim_files)
- self.sched_trigger_count = 0
- for run in self.traces:
- self.sched_trigger_count += len(run['trace'])
+ mim_files = []
+ for i, filename in enumerate(self.filenames):
+ with tarfile.open(filename) as tf:
+ self.setup_by_fileno.append(json.load(tf.extractfile('setup.json')))
+ self.traces_by_fileno.append(json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')))
+ for member in tf.getmembers():
+ _, extension = os.path.splitext(member.name)
+ if extension == '.mim':
+ mim_files.append({
+ 'content' : tf.extractfile(member).read(),
+ 'fileno' : i,
+ 'info' : member,
+ 'setup' : self.setup_by_fileno[i],
+ 'traces' : self.traces_by_fileno[i],
+ })
+ with Pool() as pool:
+ measurements = pool.map(_preprocess_measurement, mim_files)
+
num_valid = 0
for measurement in measurements:
if self._measurement_is_valid(measurement):
self._merge_measurement_into_online_data(measurement)
num_valid += 1
else:
- print('[W] Skipping {m:s}: {e:s}'.format(
+ print('[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
+ ar = self.filenames[measurement['fileno']],
m = measurement['info'].name,
e = measurement['error']))
print('[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
- self.setup = setup
+ self._concatenate_analyzed_traces()
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid